Observing ditauonium via γγ fusion in e⁺e⁻ collisions

13th Intl. Workshop on e⁺e⁻ collisions from φ to Ψ
Shanghai, 16th Aug. 2022

David d'Enterria (CERN) Hua-Sheng Shao (LPTHE, Paris)

Details in: arXiv:2202.02316 [hep-ph], 2204.07269 [hep-ph]

Exotic leptonium atoms

- Opposite-charge leptons ($\ell^{\pm} = e^{\pm}$, μ^{\pm} , τ^{\pm}) can form transient "onium" bound states under their QED interaction. Out of 6 possible exotic leptonic atoms ($e^{+}e^{-}$), ($\mu^{\pm}e^{\mp}$), ($\tau^{\pm}e^{\mp}$), only the two first (positronium in 1951) and (muonium in 1960) have been observed.
 - → Para- (J^{PC} = 0⁻⁺) and ortho- (J^{PC} = 1⁻⁻) leptonium ground states depending on relative spin orientation of leptons.

■ Ditauonium $\tau_0 \equiv (\tau^+ \tau^-)$, barely studied, is the smallest & most-bound leptonium state:

```
Mass: m_{\tau 0} = 2m_{\tau} + E_{bind} = 3553.696 MeV, E_{bind} = -\alpha^2 m_{\tau} / (4n^2) = -23.7 keV
Bohr radius: a_0 = 2/(\alpha m_{\tau}) = 30.4 fm (×3500 smaller than positronium)
Rydberg const (\gamma ionization): R_{\infty} = m_{\tau} \alpha^2 / 4\pi = 3.76 keV (×3500 larger than positronium)
```

- Compared to other exotic atoms, ditauonium can provide:
 - → New tests of QED and CPT symmetries at much higher masses (smaller distances).
 - → Sensitivity to any BSM enhanced by $(m_{\rho}/\Lambda_{BSM})^n$, unaffected by hadronic uncertainties.

Ditauonium partial widths & decays

■ Para- τ_0 decays mostly to $\gamma\gamma$ (BR ≈ 80%):

$$\Gamma^{(0)}(n^1 S_0 \to \gamma \gamma) = \frac{\alpha^5 m_\tau}{2 n^3} = 0.018384 \text{ eV}$$

■ Ortho- τ_0 has many open channels: e^+e^- , $\mu^+\mu^-$, $q\bar{q}$ BR ≈ 20%, 20%, 45%

$$\Gamma^{(0)}(n^3 S_1 \to e^+ e^-, \mu^+ \mu^-) = \frac{\alpha^5 m_\tau}{6n^3}.$$

$$\Gamma^{(0)}(n^3 S_1 \to q\overline{q}) = \frac{\alpha^5 m_\tau}{6n^3} R_{\text{had}} \left(m_{\mathcal{T}_0}^2 \right) = 2.2 \frac{\alpha^5 m_\tau}{6n^3}.$$

- Weak decay of constituent τ^{\pm} : $\Gamma_{(2)\tau \to X} = 2/\tau = 0.004535 \text{ eV}$ ($\tau \approx 290 \text{ fs}$) $\mathsf{BR}_{\mathsf{eff}} \approx 19\%,14\% \text{ for para-,ortho-} \tau_0$ $\mathsf{n} = \infty \; (E = 0)$
- Ditauonium spectroscopy:
 - → Only the two lowest states (1¹S₀ and 1³S₁) have lifetimes shorter than the weak-decay of their constituents tau's.

[DdE, R.Perez-Ramos, H-S. Shao: arXiv:2204.07269]

Ditaunioum production

- 3 possible production mechanisms of heavy leptonium considered so far:
 - (i) s-channel fusion in e^+e^- colls. for ortho- τ_0 : Tricky, it requires $\ll 100$ -keV beam monochromatization.
 - (ii) s-channel two-photon fusion for para- τ_0 : Mentioned in literature, never actually studied.
 - (iii) B-meson decays for ortho- τ_0 : Tiny... BR(B \rightarrow K(*) τ_0)~10⁻¹³ [Fael&Mannel, arXiv:1803.08880]
- We investigate for the first time the photon-fusion production mechanism at e⁺e⁻ and hadron colliders, including all backgrounds:
 - → C-even charmonium: 3 c \overline{c} : η_c (2S), $\chi_{c1,2}$ resonances within \lesssim 100 MeV of τ_0
 - → Light-by-light scattering (LbL) continuum.

Resonance production via $\gamma\gamma$ collisions

Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approx. (EPA) for γγ collisions (implemented in HelacOnia2.6/gamma-UPC):

$$\sigma(ab \to ab + X) = 4\pi^2 (2J + 1 \left| \frac{\Gamma_{\gamma\gamma}(X)}{m_X^2} \frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{(ab)}}{\mathrm{d}W_{\gamma\gamma}} \right|_{W_{\gamma\gamma} = m_X}$$

■ Diphoton charmonium resonances within $m_{yy} \approx 2.9-3.7$ GeV:

Resonance	e J^{PC}	$m_X ({ m MeV})$	Γ _{tot} (MeV)	$\Gamma_{\gamma\gamma}$ (MeV)	$\mathcal{B}_{\gamma\gamma}$
\mathcal{T}_0	0-+	3553.696 ± 0.240	$2.28 \cdot 10^{-8}$	$1.83 \cdot 10^{-8}$	~80%
$\eta_{\rm c}(1{\rm S})$	0-+	2983.9 ± 0.5	32.0 ± 0.7	$(5.06 \pm 0.34) \cdot 10^{-3}$	$(0.0158 \pm 0.0011)\%$
$\eta_{\rm c}(2{\rm S})$	0_{-+}	3637.5 ± 1.1	11.3 ± 3.1	$(2.15 \pm 1.47) \cdot 10^{-3}$	$(0.019 \pm 0.013)\%$
X c0	0++	3414.71 ± 0.30	10.8 ± 0.6	$(2.203 \pm 0.097) \cdot 10^{-3}$	$(0.0204 \pm 0.0009)\%$
Xc2	2++	3556.17 ± 0.07	1.97 ± 0.09	$(5.614 \pm 0.197) \cdot 10^{-4}$	$(0.0285 \pm 0.0010)\%$

→ Charmonia resonances have $\mathcal{O}(\text{keV})$ diphoton widths: $\mathcal{O}(10^5)$ larger than para- τ_0 . But, the diphoton BR is $\mathcal{O}(10^4)$ larger for para- τ_0 than for c-cbar states.

Photon-photon luminosities in e⁺e⁻ & UPC

Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approximation (EPA) for γγ collisions via gamma-UPC 2207.03012 [hep-ph]

$$\sigma(ab \to ab + X) = 4\pi^2 (2J + 1) \frac{\Gamma_{\gamma\gamma}(X)}{m_X^2} \left(\frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{(ab)}}{\mathrm{d}W_{\gamma\gamma}} \right)_{W_{\gamma\gamma} = m_X}$$

■ Photon-photon luminosity for e⁺e⁻ and ultraperipheral p-p, p-A & A-A collisions

$$\frac{\mathrm{d}\mathcal{L}_{\gamma\gamma}^{(AB)}}{\mathrm{d}W_{\gamma\gamma}} = \frac{2W_{\gamma\gamma}}{s_{\mathrm{NN}}} \int \frac{\mathrm{d}E_{\gamma_{1}}}{E_{\gamma_{1}}} \frac{\mathrm{d}E_{\gamma_{2}}}{E_{\gamma_{2}}} \delta\left(\frac{W_{\gamma\gamma}^{2}}{s_{\mathrm{NN}}} - \frac{4E_{\gamma_{1}}E_{\gamma_{2}}}{s_{\mathrm{NN}}}\right) \frac{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}E_{\gamma_{1}}\mathrm{d}E_{\gamma_{2}}}$$

$$\frac{\mathrm{d}^{2}N_{\gamma\gamma}}{\mathrm{d}W_{\gamma\gamma}} = \frac{2W_{\gamma\gamma}}{s_{\mathrm{NN}}} \int \frac{\mathrm{d}E_{\gamma_{1}}}{E_{\gamma_{1}}} \frac{\mathrm{d}E_{\gamma_{2}}}{E_{\gamma_{2}}} \delta\left(\frac{W_{\gamma\gamma}^{2}}{s_{\mathrm{NN}}} - \frac{4E_{\gamma_{1}}E_{\gamma_{2}}}{s_{\mathrm{NN}}}\right) \frac{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}E_{\gamma_{1}}\mathrm{d}E_{\gamma_{2}}}$$

$$\frac{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}E_{\gamma_{1}}\mathrm{d}E_{\gamma_{2}}}$$

$$\frac{\mathrm{d}^{2}N_{\gamma\gamma}}{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}} \frac{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}$$

$$\frac{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}{\mathrm{d}^{2}N_{\gamma_{1}/Z_{1},\gamma_{2}/Z_{2}}}$$

$$\frac{\mathrm{d}^{2}N_{\gamma_{$$

$\gamma\gamma$ collision x-sections (signal & backgds)

- Cross sections for signal & backgrounds computed in the Weizsäcker-Williams approximation (EPA) for γγ collisions via gamma-UPC: 2207.03012 [hep-ph].
- σ (LbL) computed with MG5@NLO (virtual box) with same photon fluxes.
- Results for e^+e^- and ultraperipheral p-p, p-A & A-A collisions:

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.	$\sigma imes \mathcal{B}_{\gamma\gamma}$						$N imes \mathcal{B}_{\gamma\gamma}$	
	$\eta_{\rm c}(1{\rm S})$	$\eta_{\rm c}(2{\rm S})$	$\chi_{c,0}(1P)$	$\chi_{c,2}(1P)$	LbL	\mathcal{T}_0	\mathcal{T}_0	$\chi_{c,2}(1P)$
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	_	_
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500
e^+e^- at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3 \cdot 10^5$
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62

(~10% uncertainties, today)

- ⇒ Relative production x-sections: $\eta_c(1S):\chi_{c2}(1P):\chi_{c0}(1P):\eta_c(2S):\tau_0 \approx 100:50:30:25:1$ driven by their different $\Gamma^2(\gamma\gamma)/(\Gamma(tot)\cdot m_{\chi}^2)$ ratios.
- → Cross sections increase with \sqrt{s} and Z^4 :
 Largest x-sections (0.6 nb) in PbPb UPC (but handful of evts expected at LHCb)
 Largest yields: 750, 5600 counts at Belle-II, FCC-ee thanks to \mathcal{L}_{int} = 50 ab⁻¹.

Ditauonium analysis strategy

- Trigger: Require two exclusive 1.5–2 GeV photons back-to-back with $m_{\gamma\gamma} \approx m_{\tau 0}$
- Reco. performances (Belle-II type: Requires high-reso FCC-ee crystal calo): Acceptance: $10^{\circ} < \theta_{\downarrow} < 170^{\circ}$. Mass resolution: ~2%. Photon reco effic. ~100%.
 - → Effectively, all diphoton resonances are Gaussian-smeared with ~70 MeV widths:

Ditauonium signal swamped by overlapping $\chi_{c2}(1P)$ & neighboring $\chi_{c0}(1P)$, $\eta_{c}(2S)$

Ditauonium signal extraction

- 1-million events generated for signal & backgrounds. Run MVA (BDT) with 12 different single- γ and γ -pair kinematic variables for signal/backgds separation:
 - (i) Strong discrimination power (factor of ~20) of LbL continuum from signal.
 - (ii) No discrimination achieved for overlapping charmonia (decay γ angular modulation of tensor χ_{c2} different than scalar τ_0 signal, but $\times 50$ suppressed yields)
- Signal extracted through multi-Gaussian m_{γγ} fit, by considering:
- \rightarrow η_c(1S): No overlap w/ signal ("std.candle"): 0.5M clean evts to fully control E_γ scale&res. plus exp. & theory uncertainties.
- → χ_{c0} , η_c (2S): Partial overlap with signal. Exploit ~100M $\gamma\gamma \rightarrow \chi_{c0}$, $\eta_c \rightarrow X$ decays with ×50 larger BRs (e.g. X=3- and 4-mesons) to fully remove their contamination.
- → χ_{c2} : Full overlap with signal! Exploit alternative $\gamma\gamma \rightarrow \chi_{c2} \rightarrow X$ decays (e.g. 11M evts.

for $X=4\pi$) to determine its lineshape to within $\mathcal{O}(0.2\%)$.

Ditauonium stat. significance

- 1-million events generated for signal & backgrounds. Run MVA (BDT) with 12 different single- γ and γ -pair kinematic variables for signal/backgds separation:
 - (i) Strong discrimination power (factor of ~20) of LbL continuum from signal.
 - (ii) No discrimination achieved for overlapping charmonia (decay- γ angular modulation of tensor χ_{c2} different than scalar τ_0 signal, but $\times 50$ suppressed yields).
- Signal extracted through multi-Gaussian m_{yy} fit.
- Statistical significance derived from profile-likelihood of fits assuming signal presence or backgd-only, with 0.3% background syst. uncertainty:

Significance (Belle-II) $\approx 3\sigma$ Significance (FCC-ee) $\approx 5\sigma$

→ Pseudodata—null-hypothesis fit residuals:

Ditaunioum via displaced vertex?

■ Whereas all charmonium resonances decay within $\mathcal{O}(nm)$ from the IP, the para- τ_0 has a lifetime of $\tau \approx 40$ fs, i.e. $c\tau \approx 10$ µm.

- For βγ ≈ 3: <L_{vtx}> ≈ 30 μm tail of events up to ~1-mm. Any single event would be an unambiguous τ₀ observation!
- → However, diphoton vertex pointing capabilities are much coarser: 1-cm range for LHCtype EM calos.

Pico-second(!) γ ToF needed to separate <1mm distances \odot

■ Potential alternative: Search for displaced e^+e^- , $\mu^+\mu^-$ vertices from ditauonium Dalitz decays $\tau_0 \to e^+e^-\gamma$, $\mu^+\mu^-\gamma$ with BR~3%: $\mathcal{O}(100)$ signal counts at FCC-ee and $\mathcal{O}(20)$ at Belle-II with ZERO background. Dedicated analysis required.

Summary

- First-ever feasibility study to produce & measure ditauonium in the lab:
 - → Heaviest & most compact purely leptonic "atomic" system.
 - → Tests of bound state QED & CPT symmetries at high-mass (potential BSM effects).
- Computed EPA x-sections for signal & backgds in $\gamma\gamma$ -collisions at LHC & e⁺e⁻:
 - → Ratios of S & B: $\eta_c(1S)$: $\chi_{c2}(1P)$: $\chi_{c0}(1P)$: $\eta_c(2S)$: $\tau_0 \approx 100$: 50 : 30 : 25 : 1
 - → Belle-II (10.6 GeV): 15 ab, 750 counts | FCC-ee(90 GeV): 0.11 fb, 5600 counts.

- ⇒ Exp./Theory uncertainties controlled thanks to very large $\gamma\gamma \rightarrow \eta_c(1S) \rightarrow \gamma\gamma$ "std. candle" sample.
- → Irreducible backgd. syst. uncertainties controlled within 0.2% via huge $\gamma\gamma \rightarrow \chi_{c0.2}$, $\eta_c(2S) \rightarrow X$ samples.
- → Stat. significance $\approx 3\sigma$ (Belle-II), 5σ (FCC-ee)
- FCC-ee/CEPC detector requirements:
- → Need detector with high energy resolution crystal calorimeter: $\delta E_{\downarrow} \approx 2\%$ at $E_{\downarrow} \approx 1.7 GeV$
- \rightarrow Alternative: mm-vertex γ pointing capabilities (impossible?), or exploit τ_0 Dalitz decays.

Backup slides