Status of Super charmtau factory project

LOGASHENKO IVAN (BINP, NOVOSIBIRSK)

13TH INTERNATIONAL WORKSHOP ON E+E- COLLISIONS FROM PHI TO PSI

Partially supported by RSF grant 19-72-20114

Motivation

The global strategy for the particle physics

After the discovery of Higgs boson, the particle physics is focused on the deep understanding of the predictions of the Standard Model and on the search of phenomena beyond SM

There are many roads...

Large Hadron Collider Energy Search for the new particles frontier *Precision study of properties* of known particles Cosmic Dark matter Intensity Colliders-Factories Cosmic rays Intensive beams frontier frontier Space-based Neutrinos experiments Rare and precision experiments

Energy ranges of high luminosity colliders (factories) correspond to production thresholds of known particles. Ultimate performance (precision) is determined by luminosity and detector quality

Generations of colliders-factories

- There is balance/synergy between existing cτ-factory (BES-III) and B-factories (BABAR, BELLE, LHCb)
- New generation *B*-factories started data taking (BELLE-2, LHCb)
- To keep balance, there is place for the new generation *cτ*-factory

Super $c\tau$ -factory is the natural part of the global particle physics strategy

Super $c\tau$ factory and B factories

The experiments at Super charm-tau factory are complement to experiments at Super KEK-B and LHCb, with unique possibilities:

- Threshold production of particles
- Pair production
- Quantum correlations in $D^0\overline{D}{}^0$ production
- Low multiplicity, full reconstruction of decay chain
- Polarization of electron beam

Super charm-tau factory

- Super charm-tau factory is e⁺e⁻ collider, dedicated to precision study of properties of charm-quark, tau-lepton, study of strong interactions, search of BSM physics
 - Beam energy from 1.5 (1.0) to 3.5 GeV
 - Luminosity $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{c}^{-1}$ @ 2 GeV
 - Longitudinally polarized electron beam
- Experiments will be conducted using state-ofthe-art general purpose detector
 - Tracking (including low p_t)
 - Calorimetry (high resolution, fast, π^0/γ sep.)
 - Particle ID ($\mu/\pi/K/p$ up to 1.5 GeV/c)

Physics program

Ivan Logashenko (BINP)

(Semi-)leptonic
$$D_{(s)}$$
 decays

$$\int_{d}^{c} \int_{D}^{v} V_{cd} g_{l} \int_{U_{l}}^{l+} V_{l}$$

$$\int_{d}^{c} \int_{D}^{e} \int_{Cd}^{2} g_{l} \int_{U_{l}}^{l+} V_{l}$$

$$\int_{d}^{c} \int_{D}^{e} \int_{Cd}^{2} g_{l} \int_{U_{l}}^{l+} \int_{U_{L$$

Lepton universality test

Table 1: LFU test at BESIII with (semi)leptonic *D* decays.

	$R(D_s^+)$	$R(D^+)$	$R(K^{-})$	$R(\bar{K}^0)$	$R(\pi^{-})$	$R(\pi^0)$
SM	9.74(1)	2.66(1)	0.975(1)[31]	0.975(1)[31]	0.985(2)[31]	0.985(2)[31]
BESIII	9.98(52)	3.21(64)	0.978(14)	0.988(33)	0.922(37)	0.964(45)

$$D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$$

Detailed study of the charmonium-like states

- Exiting QCD laboratory
- > Cross sections to be measured:
 - $\circ e^+e^- \to J/\psi \pi^+\pi^-$
 - $\circ e^+e^- \to J/\psi \pi^0 \pi^0$
 - $\circ e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$
 - $\circ e^+e^- \to D\overline{D}, \ D^*\overline{D}, \dots$
 - $\circ \ e^+e^- \to D\overline{D}\gamma$
 - $\circ e^+e^- \to D\overline{D}(n\pi)$
 - $\circ e^+e^- \to D_s^+D_s^-$
 - $\circ e^+e^- \to D_s^+D_s^-(n\pi)$
 - $\circ e^+e^- \to \Lambda_c \overline{\Lambda}_c$

0 ...

Ci U

Detailed study of the charmonium-like states

70 E

50

30

Events / 0.02 GeV/c²

- Exiting QCD laboratory
- \succ Cross sections to be measured:
 - $\circ e^+e^- \rightarrow I/\psi \pi^+\pi^-$
 - $\circ e^+e^- \rightarrow J/\psi \pi^0 \pi^0$
 - $\circ e^+e^- \rightarrow \psi(2S)\pi^+\pi^-$
 - $\circ e^+e^- \rightarrow D\overline{D}, D^*\overline{D}, \dots$
 - $\circ e^+e^- \to D\overline{D}\gamma$
 - $\circ e^+e^- \rightarrow D\overline{D}(n\pi)$
 - $\circ e^+e^- \rightarrow D_s^+D_s^-$
 - $\circ e^+e^- \rightarrow D_s^+D_s^-(n\pi)$
 - $\circ e^+e^- \rightarrow \Lambda_c \overline{\Lambda}_c$
 - o ...

Belle with ISR: PRL110, 252002

BESIII at 4.260 GeV: PRL110, 252001 **967 fb⁻¹ in 10 years running time** 0.525 fb⁻¹ in one month running time

10 years vs. 0.1 year vs. 1 day at SCT

3.7

CPV in charm

>Measurement of CP asymmetries in decays of D^0 , D^+ , D_s^+ at the precision level of $\sim 10^{-4}$

- Advantage of full event reconstruction
- Coherent $D^0\overline{D}^0$ pairs

CPV in charm

> The only experiment able to observe CPasymmetry in *D*-mesons decays at the level of $\mathcal{O}(10^{-3})$ simultaneously in many final states, including states with neutrals

Leptonic τ decays Michel parameters $\frac{d\Gamma(\tau^{\mp})}{d\Omega dx} \propto x(1-x) + \frac{2}{9}\rho(4x^2 - 3x - x_0^2) + \eta x_0(1-x) \mp \frac{1}{3}P_{\tau}\cos\theta_l\,\xi\sqrt{x^2 - x_0^2}\left[1 - x + \frac{2}{3}\delta\left(4x - 4 + \sqrt{1 - x_0^2}\right)\right]$

SCT with polarized electrons allows measurement the tau lepton Michel parameters with precision better then that of Belle II

Ivan Logashenko (BINP)

LFV and CPV with tau

$\tau \to \mu \gamma$

Allowed in several BSM scenario, including SUSY, leptoquarks, technicolor, extended Higgs models etc.

> $\mathcal{O}(10^{-9})$ – reachable upper limit at SCT for the branching of $\tau \rightarrow \mu \gamma$.

CP symmetry breaking

> CPV in tau production

$$J_{EM} \propto F_1 \gamma^{\mu} + \left(\frac{i}{2m_{\tau}}F_2 + \gamma^5 F_3\right) \sigma^{\mu\nu} q_{\nu}$$

- \circ Current limit: $|d_{ au}| \lesssim 10^{-17} \ e \cdot {
 m cm}$
- Tau EDM with polarized electrons [PRD 51 (1995) 5996]: $\sigma(d_{\tau}) \sim 10^{-20} \ e \cdot \text{cm}$
- > CPV in tau decays (e.g., $\tau \rightarrow K \pi \nu_{\tau}$)

ISR photon background [arXiv:1206.1909 [hep-ex]]

Beam polarization is essential for these measurements

$$J/\psi$$
 cross section asymmetry

2

>Interference between the $e^+e^- \rightarrow \gamma^*, Z \rightarrow J/\psi$ processes produces left-right total cross section asymmetry

$$A_{LR} \equiv \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{3/8 - \sin^{2}\theta_{\rm eff}^{c}}{2\sin^{2}\theta_{\rm eff}^{c} \left(1 - \sin^{2}\theta_{\rm eff}^{c}\right)} \left(\frac{m_{J/\psi}}{m_{Z}}\right)^{2} P_{e} \approx 4.7 \times 10^{-4} P_{e}$$

 \circ σ₊ (σ₋) is the total $e^+e^- → J/\psi$ cross section for right- (left-)handed electrons

 $\circ P_e$ is the average electrons polarization, $P_e < 1$

>Statistical precision with a one-year data set:

$$\frac{\sigma(\sin^2 \theta_{\rm eff}^c)}{\sin^2 \theta_{\rm eff}^c} \approx 0.3\%, \qquad \sigma(\sin^2 \theta_{\rm eff}^c) \approx 5 \times 10^{-4}$$

>It tests weak interaction of the charm quark

>An opportunity to observe deviation of the $\sin^2 \theta_{eff}^c$ from its value at Z peak (test of the EW model)

Physics program: 2022 update

MOHN	# (K.Tommes)	11
Corre	NHREN HECKE RODORS DD	12
Have	ение эклотических состояний чармония	14
121	Х-состояния	14
122	У-состояния	16
1.2.3	Z _c -cocrossnas	18
ктрос	копия состояний из легких кварков (М.Ачасов)	21
Jeru	е кварки в квантовой хромодинамике	22
Mare	ль конституентных кварков	23
31301	nivecsale cocrossinal	26
2.3.1	Плюний	26
2.3.2	Гибряды	28
2.3.3	Многокварковые состояния	28
зика І	О-мезонов (В.Воробьев)	30
Baegae		30
0160	р D-мезонов в пороговом эксперименте	33
Cnest	гроскопия Д-мезонов	35
Hanep	рение абсолютных вероятностей распадов	39
Jerry	онные и полулептонные распады D-мезонов	-41
Редка	не и запрещенные распады <i>D</i> -мезонов	45
Смеш	апалияе в системе нейтральных Д-мезонов	50
3.7.1	Введение	50
3.7.2	Распады некогерентных состояний	53
3.7.3	Распады когерентных пар D	54
3.7.4	Анализ распада $D \rightarrow K_S^0 \pi^+ \pi^-$	55
Hapyr	шение СР-симметрии в распадах D мезонов	59
Haney	зение сильных фаз в распадах очарованных адронов в нейтральные као- (В. Понти, П. Похлов).	64
3.9.1	Househama on these where a second properties to the second	
20.012	The PLANT ENGINE OF A CONTRACT	66
3.9.2	Измерение сильных фаз с использованием СР-собственного конечного	10
	состовния нейтрального каона	67
3.9.3	Оценка потенциальной точности измерения сильных фаз	68
	Состк Нлуч 1.2.1 1.2.2 1.2.3 жтрос 2.3.1 2.3.2 2.3.3 жана I Веде Отбор Спекс Намер 3.7.1 3.7.2 3.7.3 3.7.4 Царана Состор Спекс Намер 1.2.1 1.2.2 1.2.3 С.3.1 2.3.2 2.3.3 состор Спекс Парана Марана Марана Спекс Парана Спекс Парана Спекс Парана Спекс Парана Спекс Парана Спекс Парана Спекс Парана Ланта Спекс Парана Ланта Ла	Состоятия виде порта DT Цучетия состоятия и приотая 1.21 К-состоятия 1.22 К-состоятия варисскопная состоятий из летких кварков (M.Avacon) Легие карая и квалетовой провадивание Марка колектронтика кварков Марка колектронтика кварков 2.32 Гибрила 2.33 Магиландоване осставия 2.33 Магиландоване осставия лика D-моловов (B.Bopofoen) Вверетия 2.33 Магиландоване осставия лика D-моловов (B.Bopofoen) Вверетия Состоятия и подулетновна распадав Летионные и подулетновнае распадав Лакариение Сестимие до в распадав Составия 3.74 Анакиз ракогда Фол Куг те Париение силнах фаз и систальованием сарионов в нейтральные кам- ны (П. Покон, П. Паклон) 3.91 Манериен сильях баз с испальзованием СР-собственного констионо систавния нейтрального конста

а. и измерение сродь срасторов очарованных бариона 4. Понск СР-лауричней в разлидае очарованных барионов. 5 Физика т-лентгова (Д.Енифанов) 51 Поврение 2 Содоства г-лентгова.	71
4.2 полк с 2-зарушений в распадах отврояатых бараонов 5 Филика т-застгова (Д.Етафанов) 5.1 Висрепяе 5.2 Совествя т-летгова	2
5 Фелика т-лептона (Д.Елифанов) 6.1 Вледение 5.2 Свойства т-лептова	10
5.1 Введение 5.2 Свойства т-лептова	75
5.2 Свойства т-лептова	75
	76
5.2.1 Проверка лептонной универсальности.	76
5.2.2 Масса т-лептона	77
5.2.3 Время жизна т-лептова	78
5.2.4 Электрический и магнитный дипольные моменты т-лептова	79
5.3 Лептовные распады т-лептова	81
5.3.1 Обобщенная структура заряженного слабого взаямодействая	81
5.3.2 Обычные лептонные распады 7-лептона	83
5.3.3 Радиационные лептонные распады 7-лептона	84
5.3.4 Пятичастичные лептовные распады т-лептона.	86
5.4 Адронные распады т-лептона	89
5.4.1 $\tau \rightarrow P^- \nu_{\tau} (P = \pi, K)$	89
5.4.2 $\tau^- \rightarrow P^- \nu_e \gamma \equiv \tau^- \rightarrow P^- \ell^+ \ell^- \nu_e$, $(P = \pi, K; \ell = e, \mu)$.	90
5.4.3 $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$	91
5.4.4 Пояск токов второго класса в адровных распадах т-лептова	92
5.4.5 Адронные распады 7 в состояния с каонали в конечном состояния	94
5.5 СР-нарушение в распадах 7-лептова.	97
5.6 Нарушение лептонного аромала в распадах т-лептона	101
5.7 Измерение параметров Мишеля в распадах $\tau^+ \rightarrow \mu^+ \nu_x \hat{\nu}_r$ с распадами моона	
на лету (Д. Бодров)	102
6 Измерение сечения e ⁺ e [−] → адроны	106
7 Двухфотовная физика (В.Дружинин)	110
a Hanna Hanna America and A	
S HORCK HORON QRIMEN B PRChagax C-Khapka	119
 Перелоды с → (8,6): № 1 Перелоды с → x²7⁻ с → кл. с → кл. 	112
8.2 Depending $c \rightarrow u r r$, $c \rightarrow u \eta$, $c \rightarrow u \eta$.	114
Заключение	121
τ	
т	
τ	
τ	
τ	
τ	
7	
Ŧ	

> 2021: ≈ 40 pages

- ➤ 2022: ≈ 120 pages
- In Russian
- Editors:
 - G.Pakhlova (LPI)
 - A.Bondar (BINP)

Shorter (extracted) version prepared as a white paper for Snowmass

http://sct.inp.nsk.su

Collider

Super charm-tau factory

- Super charm-tau factory is e⁺e⁻ collider, dedicated to precision study of properties of charm-quark, tau-lepton, study of strong interactions, search of BSM physics
 - Beam energy from 1.5 (1.0) to 3.5 GeV
 - Luminosity $\mathcal{L} = 10^{35} \text{ cm}^{-2} \text{c}^{-1}$ @ 2 GeV
 - Longitudinally polarized electron beam
- Experiments will be conducted using state-ofthe-art general purpose detector
 - Tracking (including low p_t)
 - Calorimetry (high resolution, fast, π^0/γ sep.)
 - Particle ID ($\mu/\pi/K/p$ up to 1.5 GeV/c)

Lattice and layout (2021)

Design parameters (2021)

- Design parameters meet the luminosity requirements
- Similar parameters have been achieved at other colliders
- Dynamic aperture was not taken into account

The key problem now is to find configuration with sufficient dynamic aperture

E(MeV)	1500	2000	2500	3000	3500
Π(m)			870.949		
F _{pp} (MHz)			350		
20(mrad)			60		
$\varepsilon_v / \varepsilon_r(\%)$			0.5 Su	perKEKB 03.12.	2019 $\beta_y^* = 1 mn$
β_x^* / β_y^* (mm)	<		100/1		
I(A)	< 2	2	2	2	2
$N_{e/hunch} \times 10^{-10}$	9	8	7	8 PEPII:	I(e+)=3.2 A PEPII
N _b	420	472	540	47 DAFN	E : I(e-)=2.45A
U ₀ (keV)	115.6	294	516	845	1314
V _{RF} (kV)	1500	2300	3000	3500	4500
v _s	0.0152	0.0162	0.0165	0.0162	0.0168
δ _{RF} (%)	1.9	2	2	1.8	1.8
$\sigma_e \times 10^3$ (SR/IBS+WG)	0.28/1.1	0.37/1.1	0.5/1.1	0.6/1.2	0.7/1.5
$\sigma_s(mm)$ (SR/IBS+WG)	3.6/14	5/14	6/14	7/15	<u>8/15</u>
$\epsilon_x(nm)$ (SR/IBS+WG)	2.3/7.3	4/4.9	6/4.3	SuperKEKB: $L = 4.7 \times 1$	
$L_{HG} \times 10^{-35} (cm^{-2}s^{-1})$	< 0.87	1.1	1	1	1
ξ _x /ξ _y	0.008/0.17	0.005/0.14	0.004/0.1	0.003/0.09	0.003/0.07
$\tau_{Luminosity}$ (s)	< 2400	2100	2300	2300	2400

To remind: Crab waist (P.Raimondi 2006)

Large Piwinski angle: $\phi = \frac{\sigma_z}{\sigma_x} \tan\left(\frac{\theta}{2}\right)$

- 1. Transverse beam separation in parasitic IPs
 - distance between bunches is not limited by beam-beam
- 2. Interaction area length $L_i \ll \sigma_z$
 - $\beta_y^* \approx L_i \ll \sigma_z$ no hour-glass
- 3. CRAB waist (CRAB sextupoles) suppresses betatron and synchro-betatron resonances
 - $\xi_y \sim 0.2$

But CRAB sextupoles introduce large nonlinearity, which reduces dynamic aperture, for offmomentum particles

CRAB sextupole influence on 6d DA, E=1.5 Γ 3B, IP1 $_{6d-DA, y_0 = \sigma_y, \sigma_x = 4.72e - 04, \sigma_{\delta} = 1.12e - 03}$

 $X(\sigma_x)$

"Interaction region 1" configuration

 Off momentum dynamic aperture with CRAB ON is insufficient at 1.5-2.5 GeV to provide necessary Touschek lifetime

E = 1.5 GeV	CRAB 0%	CRAB 25%	CRAB 50%	CRAB 100%
$N_{part}, \times 10^{-10}$	9	4	1.6	0.6
$ au_{Touschek}(s)$	265	255	240	230
$L(cm^{-2}s^{-1}) \times 10^{-34}$	9.9	5.4	1.2	0.19

20 --- CRAB=100% - CRAB=50% 15 -CRAB=25%- CRAB=0% 10 5 -5 -10-15-200.005 -0.02 -0.015 -0.01 -0.0050 0.01 0.015 0.02

Touschek lifetime with CRAB ON and OFF at 2 GeV, IP3

"Interaction region 3" configuration

- Placing CRAB sextupoles closer to IP gives larger energy aperture
- But still not sufficient for Touschek lifetime at 1.5, 2 GeV with CRAB sextupole 100%

	CRAB OFF	CRAB ON
$ au_T(s)$	740	108
$N_p(10^{10})$	2.7	2.7

6d-DA, $y_0 = \sigma_y, \sigma_x = 3.50e - 04m, \sigma_e = 1.14e - 03, 2 \text{ GeV}$

Detector

Detector concept

Momentum resolution $\sigma_p/p \le 0.4\%$ at 1 GeV

Very symmetric and hermetic

Able to detect soft tracks ($p_t \ge 50 \ MeV/c$)

 $^{\circ}$ Inner tracker should be able to handle 10^4 tracks/cm²s

Very good particle identification: $e/\mu/\pi/K$

- π/K in the whole energy range, e.g. for $D\overline{D}$ mixing
- μ/π up to 1.5 GeV, e.g. for $\tau \rightarrow \mu\gamma$ search
- dE/dx better than 7%

Able to detect γ from 10 MeV to 3.5 GeV, good π^0/γ separation

- Calorimeter energy resolution $\sigma_E/E \le 1.8\%$ at 1 GeV
- Calorimeter time resolution $\sigma_t \leq 1$ ns

Efficient "soft" trigger

Ability to operate at high luminosity, up to 300 kHz at J/ψ

Brothers, sisters and cousins...

On-going R&Ds for detector

Inner tracker

- Time projection chamber (TPC) option by BINP
- \circ Cylindrical μ RWELL option by INFN (LNF, Ferrara)*
- Main tracker
 - Drift chamber option by BINP
 - Ultra thin DC (TraPID) option by INFN (Lecce, Bari)*
- PID system
 - FARICH option by BINP
 - FDIRC options by Giessen University*
- Electromagnetic calorimeter BINP
- >Muon system Lebedev Physics Institute (LPI)
- ➢Magnet BINP
- Detector software the AURORA framework released in 2021
- * Before spring 2022

Inner Tracker: TPC

Inner Tracker: simulations and prototyping

The prototype is being built at BINP

Simulation of spatial resolution in TPC

Inner Tracker: C-mRWELL

The c- μ RWELL option for IT was proposed by G.Bencivenni (INFN)

The Cylindrical u-RWELL

The two schemes under study are both based on a B2B layout (a double radial TPC – with a central cathode), characterized by low material budget and modular roof-tile shaped active device

"1 - B2B large drift gap" cylindrical detector

1.46 % X0

micro-TPC readout mode allowing space resolution of O(100 μm) for inclined tracks (on the radial view)

Further material budget reduction by

high module FR4 low resistivity DLC cathode aluminum Faraday-Cage/shielding

using:

N.1 large gap B2B C+layers→ 0.86% X0 2 × 1 cm gas gap/B2B device 10 cm global sampling gas

9

 Top Copper (5 μm)
 Cathode PCB

 Polyimide
 Pitch 140 μm

 DLC layer (<0.1 μm)</td>
 9

 ρ~10÷100 MΩ/□
 9

 Pre-preg
 9

 PCB electrode
 9

4 cm global sampling gas

Drift chamber

Measurement of momentum and dE/dx (PID)

- Spatial resolution ~100 μ
- Small cell
- Minimal material (reduce MS)
- Approximate size: Ø (400-1600) x 1800 mm

"Traditional" option BINP	"Beyond-traditional" option INFN
Babar, BES-3, Belle-2	KLOE, MEG-2, IDEA
Axial and stereo superlayers	Full stereo
Traditional dE/dx	dE/dx by cluster counting
Feed-through wiring	Robotic wiring

<u>ш</u>ш '

Drift chamber: "traditional" option (BINP)

R: Eigenvalue Buckling

~40000 wires

- 11k sensitive, W-Rh(Au)
- 29k field, Al(Au)

Hexagonal cell, 6.3-7.5 mm

41 layers

```
60% He + 40% C<sub>3</sub>H<sub>8</sub>
```

330 ns drift time (1.5 T)

$$\frac{\sigma_{p_t}}{p_t} \approx \sqrt{0.21\%^2 p_t^2 + 0.31\%^2}$$
$$\approx 0.4\% \text{ at 1 GeV}$$

1.5

2.5 p, GeV/c

2

Outer wall

I.Yu.Basok et al., NIM A1009 (2021) 165490

1

0.5

Drift chamber: TraPid option (INFN)

~141000 wires

- 23k sensitive, W
- 117k field, Al $(\rightarrow C)$

Square cell, 7.2-9.1 mm

Full stereo

64 layers

90% He + 10% iC₄H₁₀

$$\frac{\sigma_{p_t}}{p_t} \approx \sqrt{0.078\%^2 p_t^2 + 0.18\%^2}$$
$$\approx 0.2\% \text{ at 1 GeV}$$
$$\frac{\sigma_{dN/dx}}{p_t} \approx 3.6\%$$

dN/dx

x, mm

MEG-2 drift chamber

 Separation of the wire anchoring function from the mechanical and wire containment

Wire support

Wire cage structure not subject to differential pressure can be light and feed-through-less.

Gas containment

Gas envelope can freely deform without affecting the internal wire position and tension.

• Wire PCB

The high wires density (12 wires/cm²) imposes the use of *wires PCBs* where the wires are accurately positioned and strung at the correct mechanical tension.

Wiring robot

Stringent requirements on the precision of wire position and on the uniformity of the wire mechanical tension impose the use of an automatic system (Wiring Robot), to operate the wiring procedures.

Magnetron coating of wire

Technology for magnetron coating of thin wires (up to 40 μ m) has been developed at BINP.

Magnetron coating of wire

Technology for magnetron coating of thin wires (up to 40 μ m) has been developed at BINP.

Cluster counting

Counting number of ionization clusters (rather that deposited energy) can improve dE/dx resolution up to x2!

Cluster counting – simulations

Cluster counting - test beam at CERN

Purpose

 Demonstrate the ability to count clusters at a fixed βγ (e.g. muons at a fixed momentum – 165 GeV/c) by changing:

- the cell size (1 - 3 cm)

- the track angle (0° to 60°)

- the gas mixture (90/10: 12 cl/cm, 80/20: 20 cl/cm, for m.i.p.)
- Establish the limiting parameters for an efficient cluster counting:

 cluster density as a function of impact parameter
 space charge (by changing gas gain, sense wire diameter, track angle)
 gas gain stability
- Train different cluster counting algorithms

∽ Claudio CAPUTO ~ Federica CUNA

- Nicola DE FILIPPIS
- Francesco GRANCAGNOLO
- ⊢ Matteo GRECO
- ____ Kurtis JOHNSON Sasha POPOV
- エ Angela TALIERCIO
- Shuiting XIN

15/12/21

UC Louvain INFN Lecce INFN Bari INFN Lecce BINP Novosibirsk U of Florida BINP Novosibirsk UC Louvain IHEP Beijing RD FCC CM

PID

Requirements for PID system

 π/K separation > 4σ up to 2.5-3.5 GeV/c TOF (BES-3): 3σ at 0.9 GeV/c, DIRC (BaBar): 4σ at 2.5 GeV/c

ASHIPH (KEDR): 4σ at 1.5 GeV/c

 μ/π suppression <1/40 for to 0.5-1.2 GeV/c

good μ/π separation at low momentum

Several option are being considered:

FARICH, ASHIPH, TOF, FDIRC

FARICH: FEE based on FPGA-TDC

DC-DC convertor board

- goes behind the backplane
- 51×84 mm² size
- provides power to SiPMs, amplifiers, FPGA
- uses air inductive coils to operate in the detector magnetic field
- power, trigger & clock connectors

Calorimeter

Baseline:

BELLE/BELLE-2-like electromagnetic crystal calorimeter

Scintillator:

CsI(TI) has large light yeild, "cheap", very popular – but slow

LSO, LYSO, etc. – have large LY, very fast – but very expensive (x10)

pure CsI – good compromise: reasonable LY, 30 ns component, reasonable price

7424 crystals pCsI + WLS + 4 APD

$$\frac{\sigma_E}{E} \approx \frac{1.9\%}{\sqrt[4]{E(GeV)}} \oplus \frac{0.33\%}{\sqrt{E}} \oplus \frac{0.11\%}{E}$$

There are extensive studies with prototype at BINP. SiPM readout is being tested as well (as an option to improve time resolution)

PHIPSI'2022. STATUS OF SUPER CHARM-TAU FACTORY PROJECT.

Muon system

- detect muons
 - mult.scat. of O(1cm)
- μ/π separation
- K_L detection

Baseline option:

scintillator strips + WLS fiber + SiPM (BELLE-2, CMD-3) 8-9 layers inside iron yoke ~1500 m²

Simulation software

- SCT detector software framework
 AURORA is released. It includes
 - Full geometry description
 - Unified description of sensitive detectors
 - Realistic magnetic field
 - Digitization and reconstruction for some subsystems
 - Full parametric simulation
 - Basic data analysis tools
 - Stack of external software
- Publications
 - Presented at AFAD-2021
 - Presented to vCHEP21

Aurora internals:

- Based on Gaudi (de-facto HEP standard)
 - allows to develop software components in a convinient way (Algorithms, Tools, Services)
 - mixing C++ and Python code
- Conventional and recently emerged HEP software tools:
 - ROOT, Geant4...
 - Key4HEP (DD4hep, PODIO...)
- Other experiments software
 - ▶ Belle II, ILC, FCCSW...
- Build & configuration system inspired by ATLAS Athena
- lcgcmake system to build external packages
- Nightly builds
- Standard computing environment is Scientific Linux 7 x86_64, GCC8 + Python2&3

Simulations

Project

Potential location: Sarov

- > National Center of Physics and Matematics is a new scientific center, located near Sarov
- > It includes a branch of Moscow State University (first programs are launched in 2021)
- SCTF is discussed as one of the anchor science infrastructures for NCPM

International workshops

Workshops on future super charm tau factories:

- 1. December 2017, Novosibirsk (link)
- 2. March 2018, Beijing (<u>link</u>)
- 3. May 2018, Novosibirsk (link)
- 4. December 2018, Orsay (link)
- 5. November 2019, Moscow (<u>link</u>) + 1st general WP5 meeting
- 6. November 2020, Hefei (online, link)
- 7. November 2021, Novosibirsk (hybrid, <u>link</u>) as 5th general WP5 meeting

CREMLINplus WP5 meetings: (CREMLIN+ terminated in April 2022)

- 8. 2nd general WP5 meeting, September 2020 (online, link)
- 9. 3rd general WP5 meeting, February 2021 (online, link)
- 10. 4th general WP5 meeting, July 2021 (online, <u>link</u>)
- 11. The SCT Partnership kick-off meeting, November 18th, 2021 (link)

Participation in global strategy forums

European Strategy for Particle Physics Update

The SCT physics potential is reflected in Physics Briefing book: <u>arXiv:1910.11775</u> [hep-ex]

Snowmass2021

- Letter of intent for SCT is signed by 100 colleagues from 38 organizations (including 10 Russian organizations)
- February 2022: white paper submitted

The SCT Partnership (SCTP)

Ivan Logashenko IB Chair

Pavel Pakhlov Russian Spokesperson

A Annex 1. The Partners

List of all Partners. To be updated each time a new Partner has joined.

Country	Affiliation	LoI signing date
Germany	Justus Liebig University (JLU) Giessen	2021.09.22
Russia	Novosibirsk State Technical University (NSTU)	2021.09.24
Russia	Novosibirsk State University (NSU)	2021.10.11
Russia	P.N. Lebedev Physical Institute of Russian	2021.10.11
	Academy of Science (LPI RAS)	
Russia	Budker Institute of Nuclear Physics (BINP)	2021.10.13
Russia	Lomonosov Moscow State University Skobeltsyn	2021.10.29
	Institute of Nuclear Physics (SINP MSU)	
Mexico	Physics Department, Center for Research and Advanced	2021.11.12
	Studies (Cinvestav)	
International	Joint Institute for Nuclear Research (JINR)	2021.11.15
Russia	Higher School of Economics (HSE) University	2021.11.15
Russia	Institute of Nuclear and Radiation Physics (INRP) RFNC-	2021.11.16
	VNIIEF	

Table 1: Updated on November 18, 2021.

Proto-collaboration (SCT Partnership) launched in November 2021.

- 1. Preparation of TDR
- 2. Development of the physics program
- 3. Shaping future collaboration
- <u>sct.inp.nsk.su/partnership</u>

PHIPSI'2022. Status of Super charm-tau

Ivan Logashenko (BINP)

factory project.

Summary

- 1. There is rich physics program of experiments at Super c-tau factory
- 2. There is conceptual design of the Super c-tau factory
- 3. There are ongoing studies of collider and injector designs, simulations of the experiments at SCTF, developments of the detector subsystems on the way to TDR
- 4. The collaboration on the project is growing. The proto-collaboration, SCT Partnership, has been established.
- 5. There is new possible location for SCTF: the recently established National Center of Physics and Mathematics near Sarov