Hadron physics results at KLOE-2

XiaoLin Kang

(on behalf of KLOE-2 Collaboration)

China University of Geosciences (Wuhan) (CUG)

The 13th International workshop on e+e- collisions from Phi to Psi August 15 - 19, 2022, Shanghai, China

Outline

- KLOE and KLOE-2
- Recent research activities on hadron physics
 - ✓ Study of $\eta \rightarrow \gamma \gamma \pi^0$ decay
 - ✓ Leptophobic B boson in the $φ→ηB→ηπ^0γ$
 - ✓ Cross-section measurement of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$ in ω region
 - ✓ Search for $\phi \rightarrow \eta \pi^+ \pi^-$ and $\eta \mu^+ \mu^-$
 - ✓ Investigation of π^0 production via $e^+e^- \rightarrow \gamma^{(*)}\gamma^{(*)}e^+e^- \rightarrow \pi^0e^+e^-$
- Conclusions

KLOE @ DA Φ NE

- DAΦNE: Double rings e⁺e⁻ collider @ √s=M_φ=1019.4 MeV; σ_{peak}≈3.1 µb
- Best performance in KLOE run: $\mathcal{L}_{peak} = 1.5 \times 10^{32} \text{ cm}^{-1} \text{s}^{-1}$

Drift Chamber:

- 90% He-10% isobutane
- $\delta p_T / p_T < 0.4\% \ (\theta > 45^0)$
- $\sigma_{xy} \approx 150 \text{ mm}, \sigma_z \approx 2 \text{ mm}$
- $\sigma_{vtx} \approx 3 \text{ mm}$

SC Magnet: B = 0.52 T

Calorimeter: 98% of 4π

- $\sigma_{\rm E}/{\rm E} = 5.7\%/\sqrt{{\rm E}({\rm GeV})}$
- $\sigma_t = 54 \text{ ps}/\sqrt{E(\text{GeV}) \oplus 140 \text{ ps}}$

KLOE-2 @ DA Φ NE Updated

- Updated DAΦNE (2008), crabbed waist interaction scheme + large beam crossing
- Best performance: $\mathcal{L}_{peak} = 2.4 \times 10^{32} \text{ cm}^{-1} \text{s}^{-1}$
- 2014-2018 KLOE-2 collected ~5.5 fb⁻¹ @ ♦ peak

CCALT – LYSO Crystal w SiPM Low polar angle γ **Inner Tracker – 4 layers of Cylindrical GEM** To improve the track and vertex reconstruction QCALT – Tungsten/Scintillating Tiles w SiPM - K_L decays **Quadrupole Instrumentation HET: Scintillator hodoscope +PMTs** pitch:5 mm; @ 11 m from IP LET: 2 calor. LYSO + SiPMs e^+e^- taggers for $\gamma\gamma$ physics $(a) \sim 1 \text{ m from IP}$

KLOE+KLOE-2 data sample: ~ 8 fb⁻¹ ~2.4×10¹⁰ \$\phi\$ mesons, the largest sample collected at \$\phi\$ Unique sample for typology and statistical relevance

• Kaon physics: 8.2×10^9 Ks and K_L events

- CKM unitarity test, CPT and QM tests with kaon interferometry, Direct tests of T and CPT using entanglement, Ks rare decays…
- Light hadronic physics
 - $3.1 \times 10^8 \eta$ events
 - $1.5 \times 10^8 \, \eta'$ events
- $\gamma\gamma$ physics: $e^+e^- \rightarrow e^+e^- \gamma \ast \gamma \ast \rightarrow e^+e^- X$
 - $X=\pi^0/\eta \Rightarrow \Gamma(\pi^0 \rightarrow \gamma\gamma)$, space-like TFF
- Hadronic cross section via ISR $[e^+e^- \rightarrow \gamma(2\pi, 3\pi, 4\pi)]$: hadronic corrections to $(g-2)_{\mu}$
- Dark force searches:
 - e⁺e⁻→Uγ →ππγ, μμγ
 - Leptophobic B boson search: $\phi \rightarrow \eta B (B \rightarrow \pi^0 \gamma)$, $\eta \rightarrow B \gamma (B \rightarrow \pi^0 \gamma)$
 - Higgsstrahlung: $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss$. Energy

Doubly radiative decay $\eta \rightarrow \gamma \gamma \pi^0$

- ChPT "golden mode": O(p²) null, O(p⁴) suppressed,
 O(p⁶) dominates [PLB 276(1) (1984) 185]
- Discrepancy between experimental and theoretical results ^{10³}
 - Br = $(2.21\pm0.24\pm0.47)\times10^{-4}$ CB@AGS (2008)
 - Br = $(2.52 \pm 0.25) \times 10^{-4}$ CB@MAMI (2014)
 - Br = $(0.84 \pm 0.27 \pm 0.14) \times 10^{-4}$ from old KLOE preliminary result based on 450 pb⁻¹ data (~70 signal events)

- L = 1.7 fb⁻¹ data are analyzed and $\phi \rightarrow \eta \gamma$, $\eta \rightarrow \gamma \gamma \pi^0$ candidates are selected
- Main backgrounds: $\phi \rightarrow \eta \gamma$, $\eta \rightarrow 3\pi^0$ with lost or merged photons

Br(η \rightarrow π⁰γγ) = (1.21± 0.13_{stat}± 0.25_{syst})×10⁻⁴

Last checks on systematics ongoing

Consistent well with the recent theoretical prediction based on LoM + VMD:[R.Escribano et al., PRD 102 (2020) 034026] Br($\eta \rightarrow \pi^0 \gamma \gamma$) = (1.30 ±0.08)×10⁻⁴

- Invariant mass of non- π^0 photons can be used to test theoretical models
- Separate fits to $M(\pi^0\gamma\gamma)$ in bins of $M^2(\gamma\gamma)$
- Second bin missing due to the veto of $\pi^0\pi^0$ events $(\phi \rightarrow f_0(980)\gamma \rightarrow \pi^0\pi^0\gamma$ and $e^+e^-\rightarrow \omega\pi^0\rightarrow\pi^0\pi^0\gamma)$

 $d\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)/dM^2(\gamma \gamma)$ comparison

A factor of about 2 less than previous measurements

Search for Leptophobic B-boson

- Dark Force mediator coupled to baryon number (B-boson) with the same quantum numbers of the $\omega(782) \Rightarrow I^G = 0^-$ [S. Tulin, PRD 89 (2014) 14008]
- Couples mostly to quarks and have impact on $(g-2)_{\mu}$ anomaly

$$\mathcal{L} = \frac{1}{3} \mathbf{g}_{\mathbf{B}} \bar{\mathbf{q}} \gamma^{\mu} \mathbf{q} \mathbf{B}_{\mu} \quad \alpha_{\mathbf{B}} = \frac{\mathbf{g}_{\mathbf{B}}^2}{4\pi} \lesssim \mathbf{10^{-5}} \times (\mathbf{m}_{\mathbf{B}} / \mathbf{100 MeV})$$

- Dominant decay channel (m_B < 600 MeV): $B \rightarrow \pi^0 \gamma$ •
- Can be searched for in:
 - $\phi \rightarrow \eta B \rightarrow \eta \pi^0 \gamma$
 - $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow B \gamma \rightarrow \pi^0 \gamma \gamma$
 - $e^+e^- \rightarrow B\gamma_{ISR} \rightarrow \pi^0\gamma\gamma_{ISR}$

0.1

 10^{-3}

 10^{-5}

a 10-4

- L = 1.7 fb⁻¹ data analyzed and selection of $\phi \rightarrow \eta B \rightarrow \eta \pi^0 \gamma$ candidates with $\eta/\pi^0 \rightarrow \gamma \gamma$
- No obvious peaks are observed
- Main background from $\phi \rightarrow a_0(980)\gamma \rightarrow \eta \pi^0 \gamma$ and $\phi \rightarrow \eta \gamma \rightarrow 3\pi^0 \gamma$ with lost/merged photons
- Background evaluation from sidebands (fit region 5 σ with 1 σ exclusion region, $\sigma \sim 2$ MeV)
- Upper limit on the coupling constant α are set around O(10⁻⁷) at 90% CLs

- $e^+e^- \rightarrow 3\pi$ is the second largest contribution on a_{μ}^{HVP} at the leading order, both in absolute values and uncertainties
- Current cross section measurement of e⁺e⁻→ 3π comes from CMD-2/SND measurement with energy scan and by Babar/BES? with ISR technique
- ISR measurement at KLOE/KLOE-2 is complementary to energy scan in the range \sqrt{s} < M ϕ (SND and CMD-2)

$e^+e^-{\rightarrow}\ hadrons+\gamma$

- Analysis on ~1.7 fb-1 on-peak and ~246 pb-1 off-peak data samples
- To select $\pi^+\pi^-\pi^0\gamma$ candidates, 2 tracks with opposite curvature + 3 neutral clusters are required
- After considering the radiation correction, a simple BW is used to fit the background-free $M(\pi^+\pi^-\pi^0)$ distribution

KLOE results (Only stat. uncertainty) compared with PDG

Study of $\phi \rightarrow \eta \pi^+ \pi^-$ and $\eta \mu^+ \mu^-$

- e^{-} ρ η^{*} ρ $\rho^{(770)}$ $\rho^{(1450)}$...
- In VMD model, $e^+e^- \rightarrow \eta \pi^+\pi^-$ proceeds via p resonances, mainly via p n intermediate state, KLOE/KLOE-2 allow to measure the line shape around ϕ
- $\phi \rightarrow \eta \pi^+ \pi^-$ violates the OZI rule and G-parity \Rightarrow Br<1.8×10⁻⁵ @ 90% C.L. [CMD-2, PLB491(2000)81]

 \Rightarrow VMD predicts the Br~0.35×10⁻⁶

- The same data sample can be used to search for $\varphi \rightarrow \eta \mu^+ \mu^-$
 - ✓ $Br(\phi \rightarrow \eta \mu^+ \mu^-) < 9.4 \times 10^{-6} @90\% C.L. [CMD-2, PLB501(2001)191]$
 - \checkmark Investigate the transition form factor

$$\frac{1}{\Gamma(\phi \to \gamma \eta)} \frac{d\Gamma(\phi \to \eta \mu^+ \mu^-)}{dq^2} = \left| F_{\phi \eta}(q^2) \right|^2 \times \frac{\alpha}{3\pi} \frac{1}{q^2} \sqrt{\left| 1 - \frac{4M_{\mu}^2}{q^2} \left(1 + \frac{2M_{\mu}^2}{q^2} \right) \times \left[\left(1 + \frac{q^2}{M_{\phi}^2 - M_{\eta}^2} \right)^2 - \frac{4M_{\phi}^2 q^2}{\left(M_{\phi}^2 - M_{\eta}^2\right)^2} \right]^{3/2}} \right]^{3/2}$$

- 1.7 fb⁻¹ data analyzed
- Clear $\phi \rightarrow \eta \pi^+ \pi^-$ and $\eta \mu^+ \mu^-$ signals are observed
- The analysis is on going

$\gamma * \gamma * \rightarrow \pi^0$ analysis

for quasi-real photons
$$J^{PC}(X) = \{0^{\pm,+}, 2^{\pm,+}\}$$

 $\rightarrow X = \{\pi^0, \pi\pi, \eta\}$

- High energy tagger (HET) located 11 m away the IP after the bending dipoles acting like spectrometer for scattered e⁺/e⁻ (420<E<495 MeV)
- Asynchronous DAQ systems for HET and KLOE

Physic goal:

- $\Gamma_{\pi 0 \rightarrow \gamma \gamma}$ at few % level (green point)
- First measurement of the $F_{\pi 0\gamma*\gamma}(q^2)$ at $q_{\gamma*}^2 \le 0.1 \text{ GeV}^2$ (red points) \Rightarrow crucial for HLBL $(g-2)_{\mu}$

Analysis strategy

- \checkmark Hits in HET station and at least one bunch in KLOE associated with only 2 clusters in EMC
- \checkmark HET acquisition time 2.5 times larger than KLOE \rightarrow
 - A sample: outside overlapping time window HET-only
 - **A+ sample:** overlapping KLOE-HET time window
- ✓ Simultaneous fits of A+ and A samples

Example of fit on one HET readout channel

The number of tagged π^0 with 3 fb⁻¹ data

$\checkmark \ N_{\pi 0}$ counting: final checks on weights ongoing

- ✓ Normalize to Radiative Bhabha at very small angle
- $\checkmark~\sigma^{meas}_{Bha}$ is measured at few % level
- $\checkmark~\epsilon_{\text{ana}}$: Analysis efficiency evaluation completed
- A_{bha}/A_{π0}: Full simulation of signal and control sample, evaluated from Ekhara/BBBREM generator + BDSIM for lepton transport, evaluation of systematics in progress

Conclusions

- KLOE + KLOE-2 sample $\Rightarrow \sim 8 \text{ fb}^{-1}$ unique sample worldwide
 - \Rightarrow ~ 2.4 × 10¹⁰ ϕ sample produced
- KLOE provided important results on decay dynamics of light mesons, Transition Form Factors, discrete symmetries, and also on searches for New Physics in the Dark Sector
- With KLOE+KLOE-2 data, more interesting results on light hadron physics and fundamental symmetries are foreseen with high precision

Thanks for your attention!!!