

Institute of High Energy Physics, Chinese Academy of Sciences

Update on Radioactive Source & Cosmic-ray Test of BGO Crystal

Baohua Qi June 14, 2022

CEPC Scintillator Calorimeter Meeting

qibh@ihep.ac.cn

Motivation

- BGO crystal: 40×1×1 cm³ long bar with ESR wrapping
- SiPM: NDL EQR06 series, 6 μ m pixel, 3×3 mm²
 - Response check with NDL SiPM candidate

Туре	EQR06 11-3030D-S
Effective Pitch	6 µm
Element Number	1×1
Active Area	3.0×3.0 mm ²
Micro-cell Number	244720
Typical Breakdown Voltage (V _B)	24.5 V
Temperature Coefficient for $\mathbf{V}_{\mathbf{B}}$	23 mV / °C
Recommended Operation Voltage	$V_B + 8 V$
Peak PDE @420nm	30 %
Gain	$8.0 imes 10^4$
Dark Count Rate (DCR)	276 kHz / mm ²
Terminal Capacitance	5.1 pF / mm ²

Above parameters are measured at their recommended operation voltage and 20 °C.

¹³⁷Cs radioactive source test

• Comparison of NDL EQR06 series and HAMAMATSU S13360 series

- Detected photons: ~4.5 times
- Sharp signals with NDL SiPMs
 - Difficulty on trigger threshold setup
 - Contamination of thermal noise and cosmic-ray events

¹³⁷Cs radioactive source test

• Uniformity of signals from both ends of crystal

- Relatively low response near one side
 - Still need further tests

Cosmic-ray test

• MIP response of BGO crystal with NDL SiPM (preliminary result)

- Detected photons: significant difference, need more data
 - PDE: 30% vs 40% at 420nm, coupling: air vs silicone

Relationship between ADC channel and QDC channel

• ADC channel corresponds to peak voltage of the signal

- Generally linear relationship between ADC (Vpeak in p.e.) and QDC (charge/energy in MIP)
- Same voltage threshold corresponds to very different energy thresholds

Summary of crystal ECAL specifications

Key Parameters	Value	Notes
MIP light yield	>100 p.e./MIP	9.1 MeV/MIP in 1 cm BGO
Dynamic range	0.05~10 ³ MIP	About 500 keV~10 GeV
Energy threshold	15 p.e.	Feasible for 0.05 MIP signal
Timing resolution	~400 ps	Expected value from simulation
Crystal non-uniformity	<1%	After calibration
Temperature stability	Stable at the level of 0.05 Celsius	CMS ECAL value
Gap tolerance	—	TBD through module development

Further issues:

- Temperature control
 - Temperature dependent properties (SiPM crystal)
 - Cooling system for Front-end electronics

- Calibration schemes
 - LED single photon calibration of SiPMs
 - Transmittance of crystal: radiation damage
 - Operation and maintenance: MIP calibration

