The Optimization of CEPC DC volume

XiaoJie Jiang, on behalf of the CEPC tracker optimization team

Physics and Detector Plenary Meeting June 15th, 2022

Introduction

- Tracking system consists with a silicon pixel vertex detector(VXD), a silicon tracker (SIT and SET) of HV-CMOS, and a drift chamber(DC)
 - > Particle ID with a drift chamber is a key feature for the 4th conceptual detector
 - ➤ Most hadrons (K/pi) of CEPC are below 20 GeV/c
 - > The tracker must have sufficient good momentum resolution for tracks < 20 GeV/c (flavor and jet study)

> VXD has already been optimized by Zeng Hao 2022/6/15

Momentum error-Sagitta measurement without multiple scattering

Necessary to have more measurements at the middle for better resolution

• The optimal allocation of measurements is 1:2:1

2022/6/15

Momentum error with multiple scattering

•It is found to be **complicated**, when considering more factors on the momentum measurement.

• The left figures indicate that the MS affect the tracks, and the MS was influenced by the amount of materials, layout, momentum, and so on

• There are quite a few factors affect the momentum measurement, the relationships among them are shown in the right

Tools

• Two fast tools

✓ Analytic calculation based on python developed by Gang Li et al

LDT: a matlab fast simulation package developed by Wiener group

• Full simulation implemented in CEPCSW, reconstructed by

✓ GenFit: developed by Yao Zhang et al

✓ MarlinTrk: ILCSoft tracking maintained by Chengdong Fu

Validation: Analytic calculation comparison w/o DC hits

- The three lines has a small difference without DC hits but with DC materials
- SIT's location has a small effect on momentum measurement
- DC = 1.0-1.8m is better

2022/6/15

Validation: GenFit and MarlinTrk, w/o DC Hits

- The results are very similar when we don't use the DC hits,
- There are a little differences between these two, especially at low momentum

Validation: Analytic calculation with DC hits

- The difference becomes **more significant** when DC Hits are used, in particular at low momentum
- DC = 0.6-1.8m is better for tracks < 40 GeV/c

Validation: GenFit and MarlinTrk , with DC Hits

- When the DC hits used, the trends of two reconstructions consistent
- Even there still some differences at low momentum
- Same conclusion: DC = 0.6-1.8m is better for tracks < 40 GeV/c

Resolution of Higgs Mass $(H \rightarrow \mu \mu)$

Resolution of Higgs Mass $(H \rightarrow \mu \mu)$

DC volume	0.6-1.8(m)	0.8-1.8(m)	1.0-1.8(m)
w/ DCHits(GeV)	0.212	0.210	0.209
w/o DCHits(GeV)	0.231	0.216	0.211

- For Higgs physics(at high momentum), the DC volume has little effect on momentum measurement
- Using DC will significantly improve higgs momentum measurement

Comments on tools

- Good agreement between AnaCalc & LDT
- Good agreement between GenFit and MarlinTrk w/o DC measurement
- Rough agreement between GenFit and MarlinTrks w/ DC measurement
- All trends of different tools are consistent

Conclusion & discussion

- DC useful for momentum measurement
 - Shapes and trends are constantly consistent for all results
 - More consistent results of different methods need more tuning
- Larger DC favored by low momentum (<20 GeV) tracks
- Larger DC also benefits PID

Backup

1.4 Tracker parameters (-1800)

Components	Radius(mm)	$\sigma_{R\phi}(\mu m)$	$\sigma_Z(\mu \mathrm{m})$	Thickness(X_0 %)
Beam Pipe	10.35	-	-	0.172
VTX	12.3/14.4/35.5/37.5/58.3/60.3	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.156/0.156/0.154/0.154/0.153/0.153#
VTX-shell	65.245	-	-	0.139
	81.5/332.2/582.7;			
SITs	81.5/430.9/780.6;	7.2/7.2/7.2	86.6/86.6/86.6	0.661/0.651/0.650#
	81.5/520.8/920.5;			
DC inner wall	611.9;809.9;989.9	-	-	0.110
DC cell (66;55;45 x18x18mm)	612;810;990-1800	100	2828	0.00127×layernum ^{##}
DC outer wall	1801.93	-	-	1.349
SET	1811.3	7.2	86.6	0.182*
TotalAir				0.262**

#average for $\phi(0,2\pi)$

##GasHe_90Isob_10 without wire, if Air, 0.00592% per cell

* Sensor face to IP, 0.468% lie after sensor

** Dominant lie between SITs

The effect on impact parameter(By analytic calculation)

• There is nearly no effect on IP when we changed the volume of DC & the location of SIT outer.

Validation: compare the results under the same DC volume

• We can find the trends of curves are similar, although analytic calculation's momentum error is much lower than the full simulations

Validation: Compare full simulations & fast calculation together

- Trends of the curves are similar
- DC = 0.6-1.8m is better

Validation: LDT's results (p and ip) with DC hits

Compare with analytic calculation:

- The LDT's results is almost the same with analytic calculation
- DC = 0.6-1.8m is better

By LDT:

More options of DC volume

- When momentum below 30GeV, it looks like the volume of DC the bigger, the better, but at high momentum, the momentum error will grow a lot when we choose DC = 0.4-1.8m
- DC = 0.6-1.8m is better, which can consider both the measurement of high and low momentum well 2022/6/15