Dark SHINE – Dark Photon fixed-target search experiment at SHINE Facility

粒子物理天问论坛 2022

Jing Chen

on behalf of the Dark SHINE team

Evidence of dark matter

Jing Chen Page . 2

Gravitational Lensing

The Bullet Cluster

Rotation Curve

Cosmic Microwave Background

Dark matter candidates

Lee Institute

Searching for light DM:

- Sub-GeV mass range not fully explored yet.
- Dark photon A':

1. Dark matter particles may interact with other dark matter particles via a new force mediated by A'. LHC, BELLE-II, BESIII etc.

2.Collider experiments searching for dark photon: NA64@CERN, BESIII, BEPCII, LDMX, etc.

Dark matter is the • mysterious substance that makes up roughly a quarter of the Universe.

- Dark Matter can exist in wide mass range, from Ultralight DM to Primordial Black Holes.
- experimental search: ٠
 - Space experiments: DAMPE, AMS etc.
 - Collider experiments:

 - Underground experiments: CDEX, PandaX, LUX, Xenon etc.

不改道研究近

上海交通大学

• Dark photon is an important portal between the standard model (SM) particles and the dark matter.

Jing Chen

Page.4

• The minimal dark-photon model with 3 unknown parameters:

 ε : kinetic mixing between the SM hypercharge and A' field strength tensors. $m_{A'}$: dark photon mass. Decay branching ratio of $A' \rightarrow \chi \chi$ (assumed to be 1 or 0) $\frac{arXiv:2104.10280}{2}$

Search for dark photon

研究町

• A' production:

- Bremsstrahlung, $eZ \rightarrow eZA' \& pZ \rightarrow pZA'$, fixed-target experiment
- Annihilation, $e^+e^- \rightarrow A'\gamma$, e^+e^- collider
- Drell-Yan, $q\bar{q} \rightarrow A'$, hadron collider / fixed nuclear target w/ proton-beam

- Meson decay, $\pi^0 \rightarrow A'\gamma$ or $\eta \rightarrow A'\gamma$ (w/ $m_{A'} < m_{\pi,\eta}$), any experiment w/ high meson production rates • A' decay:

Jing Chen

Page. 5

Visible decay
Two interaction vertices → production rate
highly suppressed

- Invisible decay One interaction vertice → interaction probability enhanced

Better sensitivity!

The SHINE facility

• Dark SHINE:

海交通大学

- **Fixed-target** experiment w/ high frequency **single electron beam** provided by Shanghai High Repetition-Rate XFEL and Extreme Light Facility(**SHINE**)

- Invisible decay: $m_{A'} > 2m_{\chi}$, missing energy / missing momentum
- Search for A' in $[m_{A'}, \varepsilon]$ parameter space
- The SHINE:
 - Under construction in Zhangjiang area, Shanghai (2018-2026).
 - $E_{beam} = 8GeV$ with frequency 1MHz
 - Beam intensity: 6.25×10⁸ electrons per bunch

Science Bulletin 61, 117(2016), 720-727

Jing Chen

Page. 6

The SHINE facility

Single electron beam is needed for Dark SHINE.

研究町

-Dao Lee Institute

1300 buckets provided by 1.3GHz microwave 100pC in one bucket 6.25×10^8 electrons per bunch

electron beam w/ one electron per bunch

Jing Chen

Page . 7

Dark SHINE detector

败道研究近

Tracker:

- Tagging tracker + recoil tracker
- Incident and recoil electron tracks
- Two silicon strip sensors w/ a small angle (0.1rad)
- Resolution: $6\mu m$ (horizontal), $60\mu m$ (vertical)

- Electron & photon
- Scintillator: LYSO(Ce)

high light yield, fast decay time, low electronic noise

- $20 \times 20 \times 11$ crystals

 $2.5 \times 2.5 \times 4 cm^3$

Jing Chen

Page.8

- Energy resolution of LYSO:

- Veto hadronic background
- Scintillator w/ steel absorber
- $4 \times 4 \times 1$ modules

Magnet:

- 1.5T magnetic field

Signal & background

改直研究近

Tsung-Dao Lee Institute

Signal signature:

酒交通大學

Most of the incident momentums is transferred to *A*'.

Jing Chen

Page.9

Major background processes:

Event display

Simulation

Jing Chen

Page . 11

Signal Background - Low momentum of recoil electron - Recoil electron carry most of the incident momentum - Recoil electron angle has on - Recoil electron angle small average value 10² 10^{1} **Event Fraction Event Fraction** 0.1 GeV 0.1 GeV **Electron Energy:** 0.5 GeV 0.5 GeV **Electron Energy:** 1.0 GeV 1.0 GeV $E_e \geq 50 \text{ MeV}$ $E_e \geq 50 \text{ MeV}$ 10^{1} 1.5 GeV 1.5 GeV 100 2.0 GeV 2.0 GeV Background Background

ECAL energy vs. HCAL energy

专政道研究近

Tsung-Dao Lee Institute

潘交通大學

Jing Chen

Page . 12

Signal region

• Signal region definition:

number of the reconstructed tracks, $N_{trk}^{tag,rec} = 1$; missing momentum of electron, $p_{tag} - p_{rec} > 4$ GeV; total energy reconstructed in ECAL, $E_{ECAL}^{total} < 2.5$ GeV; total energy reconstructed in HCAL, $E_{HCAL}^{total} < 0.1$ GeV; max. cell energy in HCAL, $E_{HCAL}^{MaxCell} < 2$ MeV.

• Signal efficiency:

- 25 mass points (1×10⁵ events
- in each mass point) are produced.

Jing Chen Page . 13

- Around 60% signal events survive the cut-flow.
- Efficiency drops in:

Low-mass region of a few MeV: tight energy cuts.

High-mass region above 1 GeV: particles with large incident/recoil angle go into the HCAL directly.

· ·· ···

Process	Generate Events	Branching Ratio	EOTs		Inclusive background:
Inclusive	2.5×10^{9}	1.0	2.5×10^{9}		2.5×10^9 EOTs
Bremsstrahlung	1×10^{7}	6.70×10^{-2}	1.5×10^{8}	5	2.5/10 2015
GMM_target	1×10^{7}	$1.5(\pm 0.5) \times 10^{-8}$	4.3×10^{14}		$> 3 \times 10^{14} EOTs$
GMM_ECAL	1×10^{7}	$1.63(\pm 0.06) \times 10^{-6}$	6.0×10^{12}		
PN_target	1×10^{7}	$1.37(\pm 0.05) \times 10^{-6}$	4.0×10^{12}		Lack of statistics!
PN_ECAL	1×10^{8}	$2.31(\pm 0.01) \times 10^{-4}$	4.4×10^{11}	8	Ţ
EN_target	1×10^{8}	$5.1(\pm 0.3) \times 10^{-7}$	1.6×10^{12}	-	Extranolate from fit results
EN_ECAL	1×10^{7}	$3.25(\pm 0.08) \times 10^{-6}$	1.8×10^{12}		

Background samples:

海交通大學

Cut-flow:

No background events left after SR selection.

	EN_ECAL	PN_ECAL	GMM_ECAL	EN_target	PN_target	GMM_target	hard_brem	inclusive
total events	100%	100%	100%	100%	100%	100%	100%	100%
only 1 track	58.87%	70.48%	87.36%	5.85%	5.88%	$< 10^{-3}\%$	78.73%	84.40%
$p_{tag} - p_{rec} > 4 \mathrm{GeV}$	0.0044%	0.0033%	0.0041%	5.58%	5.46%	< 10 ⁻⁵ %	70.49%	4.80%
$E_{HCAL}^{total} < 100 \text{ MeV}$	< 10 ⁻³ %	< 10 ⁻³ %	0%	0.30%	0.72%	0%	69.61%	4.76%
$E_{HCAL}^{MaxCell} < 10 \text{ MeV}$	< 10 ⁻³ %	$< 10^{-3}\%$	0%	0.13%	0.27%	0%	65.00%	4.48%
$E_{HCAL}^{MaxCell} < 2 \text{ MeV}$	$< 10^{-3}\%$	$< 10^{-3}\%$	0%	0.058%	0.095%	0%	58.14%	4.04%
$E_{ECAL}^{total} < 2.5 \text{ GeV}$	0%	0%	0%	0%	0%	0%	0%	0%

- Fit the fraction of events below energy cutoff as a function of cut values on ECAL energy.
- Extrapolate from inclusive background simulation.
- Validation from inclusive background simulation.
- Extrapolate from rare processes simulation.

 $y = 10^{-14}$: less than one background event left w/ ECAL energy cut.

Extrapolate from the fit results.

Lack of statistics in low "cut on E_{ECal}^{total} " region.

Jing Chen Page . 15

Event yield $(3 \times 10^{14} \text{EOTs})$:

2.53×10⁻³

10° cutoff 10 Dark SHINE Prelimir 10^{3} energy ·8GeV 2.5e+09 events @ 8 GeV 7.5GeV 5.5Ge\ 1e+07 events @ 3-7.5 GeV events below 10^{-} 10^{-4} -raction 10^{-} 10⁻⁹ 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 ECal Energy [MeV] 10^t events below energy cutoff 10⁶ Dark SHINE Preliminary 4.5Ge 10 6GeV 8GeV 4GeV 2.5e+09 events @ 8 GeV 7.5GeV 10 →5.5GeV 3.5Ge 1e+07 events @ 3-7.5 GeV 3GeV -Function Fit function 10^{-2} 10 10^{-t} 10^{-8} 10⁻¹⁰ Fraction of 10⁻¹² 10^{-1} 10⁻¹⁶ 2000 3000 4000 5000 6000 7000 8000 9000

- Statistics is limited in $E_{beam} = 8 \text{GeV}$ inclusive samples.
- In extrapolation of inclusive background simulation, the fit range is far away from the final E_{ECal}^{total} cut (2.5 GeV).
- Inclusive samples with *E*_{beam} from 3 7.5 GeV are used to estimate events in low *E*^{total}_{ECal}.
- Scale low E_{beam} events to match the shoulder with $E_{beam} = 8$ GeV events.
- Event yield from direct extrapolation(3×10¹⁴EOTs):

$$N_{100,2} = 3 \times 10^{14} \times N_{100,20} \cdot \frac{N_{fit,100,2}}{N_{fit,100,20}}$$
$$= 9.23 \times 10^{-3}$$

ECal Energy [MeV]

rare processes scaled according to the corresponding branching ratio. Extrapolate from rare processes simulation.

- Rare processes background samples are produced with larger statistics.
- Fit the fraction of events below energy cutoff in other rare processes (EN_ECAL, EN_target, PN_ECAL, PN_target).

- Extrapolate from rare processes simulation.
- Estimate the number of background events corresponds to 3×10^{14} EOTs.
- Don't need to further extrapolation on:

GMM_target

 $_{10^2}$ 4.3×10¹⁴EOTs > 3×10¹⁴EOTs

- GMM_ECAL:
- 6.0×10¹²EOTs
 - Energy carried by the muon pair
- HCAL requirements can highly suppress these events (fraction of the remaining GMM events $< 10^{-6}$)

不改道研究近

Tsung-Dao Lee Institute

上海交通大學

Jing Chen

Page . 19

Sensitivity study

ao Lee Institute

 Expected 90% C.L. limit estimated with 3×10¹⁴ EOTs (running ~1 year), 9×10¹⁴ EOTs (~3 years), 1.5×10¹⁵ EOTs (~5 years) and 1×10¹⁶ EOTs (with Phase-II upgrade).

Jing Chen Page . <u>20</u>

Comparing with other experiments, Dark SHINE can provide competitive sensitivity.

- Dark SHINE: a fixed-target experiment to search for light dark matter.
- Detector R&D ongoing.
- First round of preliminary study has been finished:
 - Good signal efficiency, background well suppressed (~0.015 bkg. event expected for 1 year operation).

Jing Chen Page . 21

- Expecting competitive sensitivity.
- Submitted to Science China.

The project is officially sponsored by NSFC Original Exploration Project 2021 and Shanghai pilot program for basic research.

Backup

Dark SHINE detector

F

贬道研究近

Tsung-Dao Lee Institute

上海交通大學

hanghai Iiao Tong University

The detector geometry overview. Table 1

Node	Centre (mm)	Size (mm)			Arrangement	Comments
	Z	x	У	Z		
Tagging Tracker	-307.783	200	400	600.216	7 layers	Second layer rota- tion: 0.1 rad
Target	0	100	200	0.35		
Recoil Tracker	94.032	500	800	172.714	6 layers	Second layer rota- tion: 0.1 rad
ECAL	408.539	506	506	454.3	$20 \times 20 \times 11$ cells	
HCAL	2660.69	4029.51	4029.51	4048.01	$4 \times 4 \times 1$ modules	

上海交通大学 HANGHAI IIAO TONG UNIVERSITY

• Silicon tracker geometry

研究近

Tsung-Dao Lee Institute

Dark Shine Simulation Workshop (20/1/2021)

Calorimeter Design (ECAL)

- Cubic design of crystal for the electronic calorimeter
 - Z segmentation for 3D shower reconstruction and (potential) $\ensuremath{\text{PID}}$
 - Potential PFA combined with tracker: location resolution and better track regression
- Readout with SiPM(light sensor) and waveform sampling
 - Wide dynamic range and abundant models for different application
 - Compact size and (relatively) easy to drive
 - High repeated rate and strictly zero integral/dead time with fast ADC DAQ
- LYSO crystal chosen as baseline design with XY=2.5cm Z=4cm
 - High light yield with good linearity
 - Radiation hard and short decay time

HCAL design

xy crossing

Parameter for the whole HCAL X:100cm Y:100cm Z:360cm

Inclusive cross-section

Jing Chen Page . 28

Inclusive cross-section of dark photon bremsstrahlung from electron interacting with W target, assuming $\varepsilon = 1$.

Invisible background

• Neutrino productions:

- Moller scattering $e^-e^- \rightarrow e^-e^-$ followed by charged-current quasi-elastic (CCQE) reaction $e^-p \rightarrow v_e n$.

Jing Chen Page . 29

- Neutrino pair production $e^-N \rightarrow e^-N\nu\bar{\nu}$.

- Bremsstrahlung \bigoplus CCQE and charge-current exchange with exclusive $e^-p \rightarrow \nu n\pi_0$. No recoil electron, track requirement can remove these processes.

Table 6 Expected invisible background production corresponds to 3×10^{14} EOTs, estimated from different irreducible reaction scenarios. The Bremsstrahlung \bigoplus CCQE and the charge-current exchange productions can be effectively rejected by the one-track requirement.

irreducible reaction	Moller scattering	neutrino pair production		
estimated yield	3×10^{-4}	$< 1.8 \times 10^{-5}$		
irreducible reaction	Bremsstrahlung \bigoplus CCQE	charge-current exchange		
estimated yield	0.3	0.3		

Dark photon search experimental results

上海交通大學

改善研究近

Tsung-Dao Lee Institute

NA64, PRL123, 121801 (2019)

Jing Chen

Page . 30