

1

Test of BC420 scintillator

Hongyu Zhang

(Xiaolong Wang)

Fudan University

CEPC Physics and Detector Plenary Meeting

June 22, 2022

120cm Scintillator + SMD SiPM

- Attenuation length
- Time resolution at different position

Technical attenuation length (TAL)

Scintillator from SAINT-GOBAIN: BC420

3.2cm x 5cm x 120cm

TAL depends on:

- > Bulk transmission of the scintillator
- Geometry of scintillator
- Reflective property of the surfaces

	BC-418	BC-420	BC-422
Scintillation Properties			
Light Output, %Anthracene	67	64	55
Rise Time, ns	0.5	0.5	0.35
Decay Time (ns)	1.4	1.5	1.6
Pulse Width, FWHM, ns	1.2	1.3	1.3
Wavelength of Max. Emission, nm	391	391	370
Light Attenuation Length, cm*	NA**	140	NA**
Bulk Light Attenuation Length, cm	100	110	8
Atomic Composition			
No. H Atoms per cc (x10 ²²)	5.21	5.21	5.19
No. C Atoms per cc (x10 ²²)	4.74	4.74	4.71
Ratio H:C Atoms	1.100	1.100	1.102
No. of Electrons per cc (x10 ²³)	3.37	3.37	3.34

*The typical 1/e attenuation length of a 1x20x200cm cast sheet with edges polished as measured with a bialkali photomultiplier tube coupled to one end.

** Scintillator recommended for use in small sizes; therefore, the 1/e attenuation length values are not applicable.

-	
-	17
-	
-	

N=N₁exp(-x/L₁)+N₂exp(-x/L₂) L1: TAL X: distance N: number of photons Linear ADC mean

Technical attenuation length (TAL)

Ch1、ch4: 10cm trigger Ch2、ch3: 4SiPMs in paranal as readout Cosmic ray test TH: ADC1&ADC4>100mV

Less than 110cm from specification Unstable coupling between SiPM and scintillator Only 300 events of each position

- ✓ Near end has good time resolution of ~ 130ps
 ✓ Time resolution became worse as distance increase
- More photon collection helps to improve time resolution

D: 115cm far end

D: 60cm middle

ADC2

Summary

> Time resolution of about 140 ps has been obtained at near end.

- > Time resolution became worse as distance increase
- > More photon collection helps to improve time resolution

> Plans:

- > Design stable coupling
- > Set up of dark box
- > Test for more accurate TAL
- > Test with 2 SiPMs at two ends

Thank you!

Back up

Back up

Emission Spectra BC-420

Absorption (green) and emission (red) spectra of two fluorescent substances commonly used in plastic scintillators

Testing with two long Santi-Gobain scintillators

Two long strips from IHEP with excellent time resolution:

 $3cm \times 5cm \times 1m$

Two MCP-PMT

Trigger strips at near end:

 $4cm \times 1cm \times 10cm$

ADC1:ADC2

Santi-Gobain scintillators and SiPMs

top to bottom $\therefore 1, 2, 3, 4$

T2 and T3 with distance of $\sim 4cm$

T1 and T4 with distance of $\sim 10 cm$

Time resolution

ch1、ch4

Ch2、ch3

 $\Delta T = 97.9 \pm 6.9$

 $\sigma = 281.7 \pm 6.4$

T1-T3

Time Difference (p

Time resolution: T2,T3: **132.0** ± **3.3***ps* T1,T2: **127.2** ± **2.7***ps* T3,T4: **119**.5 ± **2**.0*ps* T1,T3: **199.2** ± **4.5***ps* T2,T4: 169.3 ± 3.6*ps* T1,T4: **222.1** ± 4.4*ps*

 \succ Increase of time resolution is due to the velocity of CR. > Velocity of CR should be taker into account.

Time Difference (ps)

 $\Delta T = -636.62 \pm 5.6$

 $\sigma = 239.4 \pm 5.1$

T2-T4

How about implementing timing?

- Two options of scintillator detector:
 - A. Cheap scintillator+WLS fibre+small SiPM, low cost for large size
 - B. Excellent scintillator+large SiPMs, reasonable cost with good timing
- We can combine them for LLP search, to extend the study area of CEPC
 - One sector far away from IP,
 - Measure the tracks with good spatial resolution,
 - Measure the TOF of tracks (and charge?) for velocity (and dEdx?).
 - The distance between layers can be tuned.

Fig. 1: Simplified detector layout showing the position of the $200 \text{ m} \times 200 \text{ m} \times 20 \text{ m}$ LLP decay volume used for physics studies. The tracking planes in the roof detect charged particles, allowing for the reconstruction of displaced vertices in the air-filled decay volume. The scintillator surrounding the volume provides vetoing capability against charged particles entering the detector.