Nuclear Physics Research at CNS

Center for Nuclear Study（CNS）， the University of Tokyo
S．Shimoura
下浦 享

原子核科学研究センター

Center for Nuclear Study（CNS）
nttp：／／www．cns．s．u－tokyo．ac．jp／

Nuclear Astrophysics（CRIB）incl．
Accerlerator［Kubono］

Exotic Nuclei（GRAPE）

Spin Physics
（Pol．Target）
SHARAQ Project in RI Beam Factory
Quark Physics
We don＇t have accelerator，but large－scale detector system

CNS Summer School (from 2002)

Summer School for Young scientists including 10 Chinese 10th school will be held in August 2011.

In-beam spectroscopy of exotic nuclei

- Nuclei far from the stability line (extreme in isosopin) via direct reaction
- Nuclei of high spin (extreme in spin) via fusion reaction

Nuclear response probed by RI beam

- New modes in Nuclei
- Spectroscopy of nuclear system beyond dripline

Studies of Nuclei over the Nuclear Chart

Direct Reactions

- Size/ ρ-distribution
- Skin/Halo
- Shell Structure $\Delta L, \Delta S, \Delta J$
- New magic \#
- Isospin / Deformation
- New modes
- IVE1
- ISEO, ISE1
- etc.

- Size/ ρ-distribution
- σ_{R}, elastic scat.
- Shell Structure
- Mass / $S_{n}, S_{2 n}$
- Inelastic scatt.
- Low lying states
- Knockout / Transfer
- New modes
- Coulex
- Inelastic scatt.
- CEX
- etc.

Mean field / Correlation ...

Inverse Kinematics w/ RI beam

- Formation of Excited States of Exotic Nuclei
- Direct reactions and their selectivities
- In-beam spectroscopy measuring decay products
- Invariant-mass/ γ-ray spectroscopy
- Particle detectors at forward angles (kin. focus.)
- Gamma detectors surrounding target (Doppler shift)
- Missing-mass spectroscopy
- Recoil \& Active Target Measurement
- Dispersion Matching/Measurement

Typical Setup of Experiment inverse kinematics

Probes for direct reactions

- Heavy Nuclei: Strong Coulomb Field
- Coulomb Excitation, Coulomb Dissociation
- E1, E2, (M1) / Isovector
- H, D, ${ }^{4} \mathrm{He}$ [Liquid targets]
- Inelastic Scattering
- Isovector (H) / Isoscaler(H, D, $\left.{ }^{4} \mathrm{He}\right)$
- Spin-Flip (H, D) / Spin-Non-Flip (H, D, ${ }^{4} \mathrm{He}$)
- Charge Exchange
- Fermi type (H) / Gamow-Teller type (H, D)
- Nucleon Transfer
- ($\alpha, \mathrm{t})$, ($\alpha,{ }^{3} \mathrm{He}$) Reaction
- Knockout
- Other (Be, C, ...)
- Inelastic Scattering
- Knockout / Fragmentation

Dirty RI beams and/or Changing Target

> Same Nucleus can be populated via Different Processes without changing Detector System

Observables - reaction/decay meas.

- Yields (Cross Sections) / Lifetime / Width
- Spectra: As a function of Exc. Energy (+ incident energy)
- Properties of populated states (\leftarrow Selectivity)
- Angular Distribution / Momentum Transfer

Reliable Reaction Models with small numbers of parameters

- Assignment of $L \rightarrow J^{\pi}$
- Eikonal Model [Knockout]
- Virtual Photon / DWBA / Coupled Channels [Coulex, Inelastic, Transfer]
- Optical Potential / Transition Density
- Folding Model with Density Dependent Effective Interaction
- Angular Correlation / Alignments
- Assignment of J^{π}

Cross sections as a function of ...

(α, α^{\prime}) and (α, t) reactions on exotic nuclei at intermediate energy

- Alpha inelastic scattering
- Cluster states in ${ }^{12} \mathrm{Be}$
- Isoscaler responses in ${ }^{14} \mathrm{O}$
- Nucleon transfer from alpha
- Proton intruder state in neutron-rich nuclei ${ }^{13} \mathrm{~B}$
-Evolution of LS splitting ${ }^{23} \mathrm{O}$

Nucleon Transfer from ${ }^{4} \mathrm{He}$ @ 30-50 A MeV

- Proton Single particle states in neutron-rich nuclei
- ${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{13} \mathrm{~B} \gamma\right)$
[S. Ota et al., Phys. Lett. B 666 (2008) 311]
- ${ }^{4} \mathrm{He}\left({ }^{22} \mathrm{O},{ }^{23} \mathrm{~F} \gamma\right)$, ${ }^{4} \mathrm{He}\left({ }^{23} \mathrm{~F},{ }^{23} \mathrm{~F} \gamma\right),{ }^{4} \mathrm{He}\left({ }^{24} \mathrm{~F},{ }^{23} \mathrm{~F} \gamma\right)$, $\left.\mathrm{He}\left({ }^{25} \mathrm{Ne},{ }^{23} \mathrm{~F} \gamma\right)\right]$
utilizing cocktail beams
[S. Michimasa et al., Phys. Lett. B 638 (2006) 146]

N-rich N=8 Nuclei

Spin-orbit splitting between $v \mathrm{p}_{1 / 2} \& v \mathrm{p}_{3 / 2}$ depend on the number of protons in $\pi p_{3 / 2}$ orbit attracting $\nu p_{1 / 2}$ orbit

${ }^{13}$ B

-Spherical ground state
-How about excited states?
-Deformed core + proton?
${ }^{12} \mathbf{B e}$
-Low-lying 2^{+}state
\cdot Low-lying 1^{-}- state
\cdot Low-lying $0^{+}{ }_{2}$ state Magicity loss in $\mathrm{N}=8$ Deformed ground state

Change of Boron Proton Shell as a function of configuration

Proton intruder state

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{13} \mathrm{~B} \gamma\right)$ @ 50 A MeV

Deformed ${ }^{12} \mathrm{Be}$ core +1 proton ?

4.83 MeV states strongly excited by (α, t)

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{13} \mathrm{~B} \gamma\right)$ @ 50 A MeV

Angular Distribution of ${ }^{13} \mathrm{~B}$ coin. with $4829 \mathrm{keV} \gamma$

FR-DWBA (DWUCK5)

Optical Potential:
${ }^{12} \mathrm{C}+{ }^{4} \mathrm{He}$ (entrance)
${ }^{12} \mathrm{C}+{ }^{3} \mathrm{He}$ (exit)
$\mathrm{L}=0->\mathrm{J}^{\pi}=1 / 2^{+}$
$C^{2} S \sim 0.2$
-> Proton "single particle" state on ${ }^{12} \mathrm{Be}$

${ }^{13} \mathrm{~B}\left(1 / 2^{+}{ }_{1}\right)$

$\begin{array}{ll}\text { Present calc. } & H^{H} y p_{e r} \text { deformation ? } \\ 1 / 2_{1}^{+} & \beta=0.73\end{array}$
$E_{x} \approx 8 \mathrm{MeV}$
$3 \hbar \omega=(s d)_{\pi}(s d)_{v}^{2}$

neutron

$$
\square a \rightarrow+\square
$$

Proton intruder state in neutron-rich nuclei
$4 \mathrm{He}(12 \mathrm{Be}, 13 \mathrm{~B} \gamma)$ Experiments By Ota et al.
$1 / 2^{+} \quad E_{x} \approx 5 \mathrm{MeV}$

CNS-GRAPE

Gamma-Ray detector Array with Position and Energy sensitivity

- High Resolution
- 2.5 keV intrinsic resolution for 1.3 MeV γ
- High Sensitivity
- $\varepsilon \Omega \sim 5 \%$ for $1 \mathrm{MeV} \gamma$
- Position Sensitive
- Resolution of Doppler Correction ~ 1 \%

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{12} \mathrm{Be} \gamma\right)$

Lifetime measurements of 2+,4+states in $60,62 \mathrm{Cr}$ by Recoil Distance method

N.Aoi et al. PRL102, 012502 (2009)

- Recent study of ${ }^{60,62} \mathrm{Cr}$ by N.Aoi et al.
- (p,p') experiment at RIPS
- New deformed region near ${ }^{60} \mathrm{Cr}$
- Deformation length $\delta \mathrm{pp}$,
- $\operatorname{Ex}(2+), E x(4+)$
- R4/2
- Shell model with GXPF1A
- pf shell up to $\mathrm{N}=34$
$-\mathrm{pf}+\mathrm{gd} \mathrm{N} \geqq 36$
- $B(E 2)$ by life time

Proposal for RIBF exp.

Spin polarization

Polarization Study of Unstable Nuclei

SPIN plays a more active role in unstable nuclei than in stable nuclei.
Tensor force effects, change of spin-orbit coupling strength... Scattering of spin-polarized protons should shed ${ }_{\text {T. Uesaka, }}$ S. Sakaguchi et al., a new light onto physics of unstable nuclei. PRC 82, $021602(\mathrm{R})(2010)$

CNS Polarized Proton Target applicable to RI beam exp.

Planned experiment at RIBF

How spin-orbit coupling strength changes as a function of \mathbb{Z} / \mathbf{N} ?

- a key to understand shell regularity far from the stability line

Single hole state spectroscopy of oxygen isotopes

via the (p, pN) knockout reaction

with the polarized target (T. Uesaka et al.)

$$
\Rightarrow \mathbf{J}
$$

SHARAQ Project

SHARAQ is a HIGH-RESOLUTION magnetic spectrometer constructed at RIBF by University of Tokyo - RIKEN collaboration.

RIBF RIBF RI beam experiments
will be started in will be started in 2007 ,
with collore

SHARAQ

 Spectroscopy with Highresolution Analyzer \& RadioActive Quantum beamsRI Beam ($E=150-400 \mathrm{MeV} / \mathrm{A}$) as a new PROBE to nuclear systems

- Large Isospin
- Large internal energy
iso-tensor excitations
($q,(\omega$) inaccessible by stable beams

Exothermic Charge Exchange Reactions

RI beam induced reactions as new spectroscopic tools

RI beam induced charge exchange reactions:
new spectroscopic tool to reveal hidden nature of nuclear system
Transferred quantum numbers ($\Delta \mathrm{S}, \Delta \mathrm{T}, \Delta \mathrm{L} \ldots$)
Kinematical region (q transfer)
FIRST experiment : $\left(\mathbf{t},{ }^{\mathbf{3}} \mathrm{He}\right)$ exp. to search for $\boldsymbol{\beta}^{+}$-type IVSMR

Hot Results from October-2010 runs

(${ }^{10} \mathrm{C},{ }^{10} \mathrm{~B}$ (IAS)) @ 200 MeV
$\Delta \mathrm{S}=0, \Delta \mathrm{~T}=1$ selectivity (unique)
1022 keV g-ray is a signature of $\mathrm{DS}=0$

$\left({ }^{12} \mathrm{~N},{ }^{12} \mathrm{C}\right) @ 200 \mathrm{MeV}$
"recoil-less" excitation of
isvector spin monopole states
EXOTHERMIC reaction ($\mathrm{Q} \gg 0$)

Tetra-neutron system using exothermic

 charge exchange reaction

Summary

- Direct Reactions combined with invariant-mass $/ \gamma$ spectroscopy are powerful tools to investigate excited states in exotic nuclei
- Cluster states
- Isoscaler responses
- Nucleon transfer reactions at 30-100 A MeV from α are useful for searching single-particle states
- Single particle structure
- Structure change in excited state
- High-spin studies using fusion reaction (SD)
- Now and then :

SHARAQ spectrometer and/or gamma-detector GRAPE

- Exothermic CX reactions (IVM, IVSM, Tetra-neutron...)
- Lifetime measurement using recoil distance method
- High momentum components, n-n correlations, etc

Thank you

Proton Transfer in Momentum Space

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{12} \mathrm{Be} \gamma\right)$ at 60 A MeV

γ spectrum coincident with Angular Distributions of ${ }^{12} \mathrm{Be}$ * ${ }^{12}$ Be ejectiles
2.1 \& 2.7 MeV States excited by (α, α^{\prime})
DWBA [col. FF \& folding pot.]

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{12} \mathrm{Be} \boldsymbol{\gamma}\right)$ at 60 A MeV
Angular distribution of γ-decay after (α, α^{\prime})
2.1 \& 2.7 MeV States excited by (α, α^{\prime})
Alignments of ${ }^{12} \mathrm{Be}^{*}$ Anisotropic Angular Distribution of γ
Consistent with
Prediction of DWBA calculation assuming 2^{+}\& 1^{-}excitation, resp.
Confirmation of 1assignment for 2.7 MeV state

Alpha inelastic scattering to highly excited cluster states

- ${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{12} \mathrm{Be}{ }^{*} \rightarrow{ }^{6} \mathrm{He}+{ }^{6} \mathrm{He}\right) \&$ ${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{4} \mathrm{He}+{ }^{8} \mathrm{He}\right) @ 60 \mathrm{~A} \mathrm{MeV}$
- Cluster states in ${ }^{12} \mathrm{Be}$
- Invariant mass
- L=0, 2, (4) excitations
- Multipole Decomposition Analysis (MDA) including decaying process

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{12} \mathrm{Be} *->{ }^{6} \mathrm{He}+{ }^{6} \mathrm{He}\right)$

Angular Distribution \& Angular Correlation

MDA analysis

$$
\frac{d^{2} \sigma}{d \Omega_{\text {inel }} d \Omega_{\text {decay }}}=\left|\sum_{l, m} \alpha_{l} \beta_{l m}(\theta) Y_{l m}^{*}\left(\Omega_{\text {decay }}\right)\right|^{2}
$$

${ }^{4} \mathrm{He}\left({ }^{(12} \mathrm{Be},{ }^{12} \mathrm{Be}^{*}\right)$: Deduced levels ($0^{+}, 2^{+}$)

Table 5.1: Results of the fit to excitation energy spectra.

J^{π}	E_{R} $[\mathrm{MeV}]$	$\sigma_{\mathrm{R}}\left(E_{\mathrm{R}}\right)$ $[\mu \mathrm{b}]$	Γ_{R} $[\mathrm{MeV}]$	$\sigma_{\mathrm{R}} / \Delta \sigma_{\mathrm{R}}$	significance $1000 \%-(\%)$
0^{+}	$10.41(4)$	$2.2(7)$	$0.0090(28)$	3.1	0.73
	$10.82(3)$	$16(4)$	$0.18(12)$	4.6	0.006
	$11.27(3)$	$21(5)$	$0.12(25)$	4.1	0.006
	$11.91(10)$	$20(6)$	$0.72(16)$	3.6	7.28
	$13.83(9)$	$14(5)$	$0.63(33)$	3.0	0.91
2^{+}	$10.60(5)$	$3.9(1.0)$	$0.20(4)$	4.0	1.20
	$11.26(6)$	$43(9)$	$0.51(5)$	5.0	0.35
	$11.82(12)$	$47(10)$	$0.75(9)$	4.9	0.35
$13.01(12)$	$52(9)$	$1.29(14)$	5.6	0.002	
$14.71(7)$	$14(3)$	$<0.37^{\dagger}$	4.4	2.70	
$15.93(10)$	$10(3)$	$<0.65^{\dagger}$	3.6	5.76	

Same method (with odd $)$) is applied for ${ }^{4} \mathrm{He}+{ }^{8} \mathrm{He}$ channel (preliminary)

${ }^{4} \mathrm{He}\left({ }^{12} \mathrm{Be},{ }^{12} \mathrm{Be}{ }^{*}->{ }^{6} \mathrm{He}+{ }^{6} \mathrm{He},{ }^{4} \mathrm{He}+{ }^{8} \mathrm{He}\right)$

High-spins using Fusion reaction

Superdeformed 球形 band in ${ }^{40} \mathrm{Ar}$

Level scheme of ${ }^{40} \mathrm{Ar}$

Exp. @ Tohoku

