Int. Sym. on Nuclear Physics in Asia October 15, 2010, Beihang University, Beijing

Nuclear Physics at J-PARC

famous for 魯迅 Tohoku University 東北大学 H. Tamura 田村裕和

Contents

- 1. Introduction J-PARC and Hadron Hall The first experiment –pentaquark search
- 2. YN and YY interactions (hypernuclei) γ spectroscopy of Λ hypernuclei Ξ hypernuclei, $\Lambda\Lambda$ hypernuclei
- 3. Hadrons in nuclei

Magnetic moment of Λ in a nucleus K-nucleus bound states

(Vector meson mass in nuclei) -> Ozawa

4. Summary

1. Introduction J-PARC and Hadron Hall

J-PARC

Tokai, Japan

(Japan Proton Accelerator Research Complex)

Material and Biological Science Facility 50 GeV Synchrotron (15 μA)

3 GeV Synchrotron (333 μA)

Neutrino Facility

World-highest beam intensity : ~1 MW x10 of BNL-AGS, x100 of KEK-PS

400 MeV Linac (350m)

Hadron Hall 60m x 56r

J-PARC Hadron Hall

J-PARC

K1.8

ted

ntion

S=-2 systems
quite unique at J-PARC

E-atomic X rays Θ^+ search Weak decays of Λ hypernuclei Pion double charge exchange ω nucleus

High Mom.

 γ spectroscopy of Λ hypernuclei

<u>n-rich A hypernuclei</u>

r<u>∃ hypernuclei</u>

<u>ΛΛ hypernuclei</u>

<u>Hadron mass in nuclei</u> Nucleon quark structure

K1.1

K⁻ nucleus bound states
K⁻ atomic X rays
η nucleus
φ nucleus

Started physics runs

K1.8BR

30~50 GeV primary beam

approved / proposed (incl. LOI)

K1.1BRΘ+ studyγ spectroscopy of Λ hyp.Σ hypernucleiYN scatteringΘ+ hypernuclei

Not funded yet

Hadron Hall as of 2008.10

Hadron Hall as of 2008.10

JFE XDC

ne

40(40+20)t/20t

spectrometer

123222 R R R R

K1.8 line

SKS

K1.8 Beam Line as of 2009.10

proton beam

line

production target

.1 line

<u>K1.8/SKS</u> Performance

DC Mass Separators

Participants at K1.8: the first beam day

E19 (Naruki et al.)

Search for Pentaquark Θ^+ in $\pi^-p \rightarrow K^-X$ reaction

2. YN and YY interactions (Hypernuclei)

 γ spectroscopy of Λ hypernuclei, $\Lambda\Lambda$ hypernuclei, Ξ hypernuclei

Objects of nuclear physics at J-PARC (Strangeness Nuclear Physics)

World of matter made of u, d, s quarks

by M. Kaneta inspired by HYP06 conference poster

Hyperon mixing in neutron star core

Nucleons only -> EOS too stiff -> Mass of neutron stars much larger than observed. A new degree of freedom necessary – most probably strangeness (hyperons)

Baryon fraction: very sensitive to YN, YY interactions

<u>Hyperball</u>

<u>AN spin-dependent interactions</u>

■ Low-lying levels of Λ hypernuclei

can be determined form γ -ray data

Observation of Hypernuclear Fine Structure

(AGS D6 line + Hyperball) **BNL E930**

Tamura et al., NPA 754 (2005) 58c

Observation of Hypernuclear Fine Structure

BNL E930 (AGS D6 line + Hyperball)

Akikawa et al., PRL 88 (2002) 082501 Tamura et al., NPA 754 (2005) 58c

Ukai et al., PRL 93 (2004) 232501

<u>Hyperball</u>

Hypernuclear γ-ray data

AN spin-dependent interaction strengths determined: $\Delta = 0.3 \sim 0.4$, $S_A = -0.01$, $S_N = -0.4$, T = 0.03 MeV Almost all these p-shell levels are reproduced by this parameter set. (D.J. Millener)

J-PARC E05 (Nagae et al.) K⁻p -> Ξ⁻K⁺ Ξ-hypernuclear spectroscopy by (K⁻,K⁺)

First spectroscopic study of

- S=-2 systems in (K⁻,K⁺) reaction
 First step to multi-strangeness
 - baryon systems

Properties of EN Interaction

- Attractive or repulsive? How large
 - <- E-nuclear potential depth
- Isospin dependence ?
 - <- Different targets
- $\Xi N-\Lambda\Lambda$ coupling force ?
 - <- $\Xi p \rightarrow \Lambda \Lambda$ conversion width
 - <- Ξ and $\Lambda\Lambda$ hypernuclear mixing

J-PARC E07 (Nakazawa, Imai, Tamura et al.) S=-2 Systems with Emulsion-Counter Hybrid Method

3. Hadrons in Nuclei Magnetic moment of Λ in a nucleus K-Nucleus bound states (Vector meson mass in nuclei)

How the magnetic moment of baryons changes in a nucleus?

...can be measured using a Λ

Direct measurement of μ : extremely difficult -> B(M1) gives g_{Λ} value

$$B(M1) = (2J_{up} + 1)^{-1} | \langle \Psi_{low} || \mu || \Psi_{up} \rangle |^2$$
$$= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_c + 1} (g_{\Lambda} - g_c)^2 [\mu_N^2]$$

Lifetime of ${}^{7}_{\Lambda}$ Li(3/2+) via Doppler shift attenuation method -> Transition rate (accuracy ~5%) -> g_{Λ} (K⁻, π ⁻) reaction $\int_{J_{c}+1/2}$ $\int_{J_{c}-1/2}$ $\int_{J_{c}-1/2}$ $\int_{J_{c}-1/2}$

-> enhancement of µ??

K-Nuclear Bound Systems

Suggestions:

Strongly attractive \overline{K} -Nuclear potential ($\leftarrow K^{-}$ atomic and scattering data) $\Lambda(1405)$ as a \overline{K} -N bound state

-> Suggests an extremely deep state (BE ~ 110 MeV for K⁻ppn)

Neutron/quark star on the earth ??

Present Status – exciting but puzzling

Under a big debate by theorists

Deep (150~200 MeV, phem. models) or shallow (~50 MeV chiral model)? Two nucleon absorption?

More experimental data

- E471 @KEK ⁴He (K⁻_{stop},n) [K⁻ppn]
- FOPI @GSI Ni+Ni
- OBELIX K⁻_{stop}on ⁴He, Li
- DISTO p p -> K⁺ [ppK⁻]

Seem to be inconsistent with each other

=> Decisive experiments strongly required

J-PARC E15 (Iwasaki, Nagae et al.) Kaonic Nuclei via ³He(K⁻,n)

