

CANDLES for the study of double beta decay of ⁴⁸Ca and its enrichment

T. Kishimoto RCNP Osaka Univ.

Present to near future of RCNP

- Cyclotron accelerator facility: Hatanaka
- LEPS facility: hadron physics: Nakano
- Research center for subatomic science (present)
 - How matter (mass) was synthesized
 - LEPS2: Hadron physics (GeV photon)
 - MUSIC: Lepton Flavor mixing (muon)
 - CANDLES: Double beta decay (Lepton number violation)
 - Collaboration with J-PARC, RIKEN, Tohoku,..., China and other countries.
 Asian accelerator science school
- Higher Intensity for cyclotron facility (near future)
 Neutron EDM, Muon, BNCT

Baryon density in our Universe

- Big bang nucleosynthesis
 - ⁴He, D, ³He, ⁷Li
 - Baryon density

 $ho_{B} \sim 10^{-10}
ho_{\gamma}$ If particle number is conserved, Particle : 1,000,000,001

> Matter dominated Univ. $\rightarrow CP + particle \#$ $\rightarrow Double Deta decay$

Candles

Relativity + uncertainty →anti-particle

 no information is faster than speed of light interact with any spacetime \rightarrow particle that travels backward in time \rightarrow antiparticle Carries inverse quantity distance (charge spin(chirality)) **Dirac equation** Feynman Charge: conserved Chirality: violated by mass antiparticle particle

Majorana particle

v has to be a Majorana particles

Candles

• Mass term (Dirac)

$$\mathcal{L}_D = -m_D \overline{\nu_R^0} \nu_L^0 + \text{ h. c.}$$

- Mass term (Majorana)
 - Only Left (right) handed mass term can be made
 - Left and right can have different mass
 - We know only left-handed neutrino
 - Heavy right-handed v
 (see-saw mechanism)
 - Violates lepton number

Leptogenesis

$$\mathcal{L}_{m_L} = -\frac{m_L}{2} \overline{(\nu_L^0)^c} \nu_L^0 + \text{ h. c.}$$

Chirality flip (relativity)

Left handed \rightarrow right handed (anti-particle)

Double beta decay nuclei

- Nuclei
 - ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo,
 - ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd
 - Positron emitter

- Ultra rare process
 - $-\,10^{20\sim25}\,yr$
- Huge natural background sources
 - High sensitive detector
 - Low background circumstance Underground lab.

So many experiments and laboratories in the world

Why ⁴⁸Ca

- Highest Q value (4.27 MeV, ¹⁵⁰Nd: 3.3 MeV)
 - Large PV, Little BG(γ : 2.6 MeV, β : 3.3 MeV)
- Small natural abundance: 0.187%
 - Isotope separation \rightarrow expensive (no Gas)
- Next generation
 - $-M_v \sim T^{-1/2} \sim Det. Mass^{-2}$ (no BG)
 - ~ Det. Mass⁻⁴ (BG limited)

- ⁴⁸Ca (no BG so far)

- Reliable nuclear matrix element $< m_v >$
- If we want to sense normal hierarchy region, only ⁴⁸Ca + enrichment have a chance.

A tunnel constructed for a railroad but never used. It is 60km south from Osaka

 $T_{1/2}^{0\nu\beta\beta} > 1.4 \times 10^{22}$ year (90% C.L.) $\langle m_{\nu} \rangle < 7.2 \sim 44.7 \,\mathrm{eV} \ (90 \% \ \mathrm{C.L.})$

ELEGANT VI

NPA 730 '04, 215

LiH + Paraffin

Airtight ho

CaE2(Pure)

9

Od sheet

CoF2(En)

⁴⁸Ca double beta decay by ELEGANT VI @ Oto NPA 730 '04, 215 PRC78 058501('08)

Candles

CaF₂(pure)

 $CaF_2(Eu)$

CaF₂(pure)

But only 6.4g of ⁴⁸Ca ¹⁰

How to sense $m_v = 1 \sim 10^{-2} eV$

- Big detector
 - Huge amount of materials
- Low radioactive background
 - Active shield
 - Passive shield
 - Low background material
 - BG rejection by signal processing
- High resolution
 - Backgrounds from $2\nu\beta\beta$ decay
- CANDLES is our solution

CANDLES

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matrterscandles by <u>Low Energy Spectrometer</u>

Development of Low Background CaF₂ Crystals

CaF2(Eu) in ELEGANT VI U-chain(214Bi) : 1100µBq/kg Th-chain(220Rn) : 98µBq/kg

Where is the crystals contaminated?

CANDLES III@Osaka

Candles

PMT: 13" × 32 15" × 8

Tank: ${}^{\phi}2.8 \times {}^{h}2.6 m$

CaF₂: 191 kg 10^3 cm³ × 60

CANDLES III(UG)

CANDLES III(UG)

CANDLES III(UG)

(CaF₂ crystals)

Mile stone

- ELEGANTS VI
 - Best ⁴⁸Ca $0\nu\beta\beta$ limit
- CANDLES I, II
- CANDLES III+ III(UG)
 - $-100 \text{ x}10 \text{cm}^3 \text{ CaF}_2 (\sim 30 \,\mu\text{Bq/kg}) \ \sim 0.5 \,\text{eV}$
 - Start running in this November.

achieved

- CANDLES IV
 - 3t CaF2 (3.5 kg $^{48}\text{Ca})$ (~3 $\mu\text{Bq/kg})$ ~0.1 eV
- CANDLES V

- Enrichment and 0.3~1t of ${}^{48}Ca$ (m_v~10meV)

Enrichment of ⁴⁸Ca

• Increase $\beta\beta$ nuclei

⁴⁸Ca:0.2% => 5~10 %

- BG reduction
- Crown ether
 - Sep. coeff. $\epsilon \sim (3.5 \pm 0.5) \times 10^{-3}$
 - Crown ether resin

Enrichment for long migration

Summary

- Double beta decay will change our understanding on particle and anti-particle and our universe.
- CANDLES has potential to see signals.
- Enrichment of ⁴⁸Ca is key R&D item.
 - Crown ether (CE) resin is under R&D.
 - China is the largest supplier of CE.
- Collaborators are welcome particularly from China, where underground science is under preparation.

Thank you.