

2 staff members 4 postdocs 4 Chinese
5 visiting researchers
More than 10 students

+ IPC course
http://www.rcnp.osaka-u.ac.jp/~ipc/

theory

2 staff members 4 postdocs 4 Chine:

Elucidation of new hadrons with variety of flavors（2009－2013）

「多彩なフレーバーでさぐる新しいが田リ存在形態の包括的研究」

世界をリードする素粒子原子核分野の実験•理論研究者が，「ハト゚ロン」という共通のキー ワードを得て結集，その境界領域に新しいハドロン物理学を創成する。

E01（理論研究）QCDに基づく統一的な理解＋実験への予言 クォ一クがどのように質量を獲得し，どのような形態でハドロンに閉じ込められるのかを探る

多彩なフレーバーと密度を自由度とした（マルチ）クォーク物質の豊富なデータ

D01（検出器開発）：将来の加速器増強に向けて必要となる検出器開発

Structure of resonances single particle vs collective（cluster）

Atsushi Hosaka 保坂 淳

 RCNP，Osaka UnivCollaborators：T．Hyodo（TITech，Tokyo），
D．Jido（Yukawa Inst．Kyoto），
H．Nagahiro（Nara Women＇s Univ），
K．Nawa，S．Ozaki（RCNP）
Oct．14－15
International Symposium on Nuclear Physics in Asia

1. Introduction

"Constituent" quarks

Successful for ground states $q \bar{q}$ and $q q q$ of independent particles

Light flavor

Observation of exotic hadron resonances

$\boldsymbol{\Theta}^{+}, \mathbf{\Lambda}(\mathbf{1 4 0 5}), \ldots, \mathbf{X}(\mathbf{3 8 7 2}), \mathbf{Z}^{+}(4430)$, etc
Pentaquarks Hadronic molecule Tetraquarks

$$
\begin{aligned}
& \text { Quantum nembers } \\
& \text { Matrix elements }
\end{aligned} \quad \begin{aligned}
& \text { Not easy to explain by } \\
& \text { the conventional picture }
\end{aligned}
$$

Observation of exotic hadron resonances

$$
\Theta^{+}, \Lambda(1405), \ldots, \mathbf{X}(3872), \mathbf{Z}^{+}(4430), \text { etc }
$$

Pentaquarks Hadronic molecule Tetraquarks

Quantum numbers	
Matrix elements	
	Not easy to explain by the conventional picture

Key question:
What multiquark configurations are possible?

Triquark
Colored correlation
Oct.14-15 2010
Int. Symp. NP in Asia

Meson-baryon composite
Colorless correlation

Example in Nuclear Physics

2. Coexistence of different structures

Hideko Nagahiro ${ }^{1)}$, Kanabu Nawa ${ }^{2}$, Sho Ozaki ${ }^{2}$, Daisuke Jido ${ }^{3}$, and Atsushi Hosaka ${ }^{2}$)
${ }^{1)}$ Department of Physics, Nara Women's University,
${ }^{2}$) RCNP, Osaka University,
${ }^{3)}$ YITP, Kyoto University

Bare $q \bar{q}$ or Hadronic $\pi \rho$ composite for a_{1}

Oct.14-15 2010 Reasonably truncated model space

A problem of chiral theory

$$
L_{W T}=\frac{1}{4 f_{\pi}^{2}} \operatorname{tr} \bar{B} i \gamma^{\mu}\left[\phi \partial_{\mu} \phi-\partial_{\mu} \phi \phi, B\right] \sim \frac{\sqrt{s}-M}{2 f_{\pi}^{2}} \bar{B} B \phi \phi
$$

A problem of chiral theory

$$
L_{W T}=\frac{1}{4 f_{\pi}^{2}} \operatorname{tr} \bar{B} i \gamma^{\mu}\left[\phi \partial_{\mu} \phi-\partial_{\mu} \phi \phi, B\right] \sim \frac{\sqrt{s}-M}{2 f_{\pi}^{2}} \bar{B} B \phi \phi
$$

Point like δ-function attraction => Ill defined

Divergent loop function needs regularization
\Rightarrow We can make a model as we want
Natural scheme for compositeness condition Hyodo-Jido-Hosaka, PRC78:025203,2008

Coexistence of different structure

A model for π, ρ and a_{1}

Hidden Local Symmetry or Holographic model
Bando-Kugo-Yamawaki
Phys. Rept., 164 (1988) 217
Sakai-Sugimono
PTP113(05)843; PTP114(05)1083
Nawa, Suganuma, Kojo, PRD75(07)086003 etc

$$
\mathcal{L}_{\mathrm{WT}}=-\frac{g_{4}}{4 f_{\pi}^{2}} \operatorname{tr}\left(\left[\rho^{\mu}, \underline{\left.\partial^{\nu} \rho_{\mu}\right][\pi,} \partial_{\nu} \pi\right]\right) \quad \text { composite }_{\rho}^{\pi} \breve{-}_{\rho}^{-\sigma^{\prime}}
$$

$$
\begin{aligned}
& \mathcal{L}_{a_{1} \pi \rho}=-g_{a_{1} \pi \rho} \frac{\sqrt{2}}{f_{\pi}}\left\{\operatorname{tr}\left[\left(\partial_{\mu} a_{1_{\nu}}-\partial_{\nu} a_{1 \mu}\right)\left[\partial^{\mu} \pi, \rho^{\nu}\right]\right]\right. \\
&\left.\operatorname{tr}\left[\left(\partial_{\mu} \rho_{\nu}-\partial_{\nu} \rho_{\mu}\right)\left[\partial^{\mu} \pi, a_{1}^{\nu}\right]\right]\right\}
\end{aligned} \longrightarrow \stackrel{\text { bare }}{\bar{q} q} \underbrace{-\pi}_{\rho}
$$

Solving the problem

(a) Composite, dynamically generated

(b) Bare, $\bar{q} q$

Hamiltonian
T-matrix

$$
H=\left(\begin{array}{cc}
H_{\pi \rho}+v_{W T} & g \\
g & H_{a_{1}}
\end{array}\right) \stackrel{\text { LS-equation }}{\longrightarrow} \quad T=\left(\begin{array}{cc}
T_{\pi \rho \rightarrow \pi \rho} & T_{\pi \rho \rightarrow a_{1}} \\
T_{a_{1} \rightarrow \pi \rho} & T_{a_{1} \rightarrow a_{1}}
\end{array}\right)
$$

pole flow

To know better the nature of the poles

Extract two one-particle propagators in the T matrix
$T_{\pi \rho \rightarrow \pi \rho}=$

$$
\begin{aligned}
{\left[\hat{G}_{\text {full }}\right]^{11} } & =\frac{z_{a}^{11}}{E-E_{a}}+\frac{z_{b}^{11}}{E-E_{b}} \\
{\left[\hat{G}_{\text {full }}\right]^{22} } & =\frac{z_{a}^{22}}{E-E_{a}}+\frac{z_{b}^{22}}{E-E_{b}}
\end{aligned}
$$

Full solution -> Two level problem

mixing properties

large N_{C}

For realistic mixing pole-b stays similar pole-a changes its nature molecule-> bare

Summary for dynamical generation

- Exotics may have correlations
$q \bar{q}, q q, q q q$
Question; how are they realized and observed
- For hadronic composite, $a_{\text {natural }}$ has been defined Difference $a_{\text {pheno }}-a_{\text {natural }}$ is interpreted as bare states
- We have studied a system of composite + bare a_{1}
$\left|\mathbf{a}_{1}\right\rangle_{\text {phys }}=z_{1}|\boldsymbol{a}\rangle_{\text {bare }}+z_{2}\left|P_{\boldsymbol{\pi})}\right\rangle_{\text {composite }}+\ldots$
Two channel treatment is now being completed Large-Nc behavior is well studied.

International conference on the structure of baryons BARYONS' 10
Dec. 7-11, 2010, Osaka, Japan http://www.rcnp.osaka-u.ac.jp/~baryons baryons@rcnp.osaka-u.ac.jp

2. Topies

- Spectroscopy

Lightheavy flavor hadrons, Resonances, Exotics, Pentaquarks, Tetraquarks, Hadronic molecules, etc

- Hadron Interactions

Meson-meson, meson-baryon and baryon-baryon interactions, Anti-proton interactions, etc

- Electromagnetic and weak interactions

Photo and electro productions of hadrons, P and CP -violating processes in nucleons and nuclei, etc

- Hadrons at finite density and temperature

The QCD vacuum, Chiral symmetry, Hadron properties, QGP, Heavy ion collisions, etc

- Structure of hadrons

Form Factors, Structure Functions, Generalized Parton Distributions, Fragmentation functions, etc

- Recent Approaches to non-perturbative QCD

AdS/CFT correspondence, Lattice gauge theory, Effective field theories, etc

- New Facilities
- Other related topics

