Quark Nuclear Physics

Laser Electron Photon Beat

Takashi NAKANG

(RCNP, Osaka University)

The International Symposium on Nuclear Physics in Asia

@ Beihang University, 2010 October, 14th

LEPS Collaboration

Research Center for Nuclear Physics, Osaka University: D.S. Ahn, M. Fujiwara, T. Hotta, Y. Kato, H. Kohri, Y. Maeda, T. Mibe, N. Muramatsu, T. Nakano, S.Y. Ryu, T. Sawada, M. Yosoi, T. Yorita Department of Physics, Pusan National University : J.K. Ahn School of Physics, Seoul National University : H.C. Bhang Department of Physics, Konan University : H. Akimune Japan Atomic Energy Research Institute / SPring-8 : Y. Asano Institute of Physics, Academia Sinica : W.C. Chang, J.Y. Chen Japan Synchrotron Radiation Research Institute (JASRI) / SPring-8 : S. Date', H. Ejiri, N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa **Department of Physics and Astronomy, Ohio University** : K. Hicks **Department of Physics, Kyoto University** : M. Niiyama, K. Imai, H. Fujimura, M. Miyabe, T. Tsunemi Department of Physics, Chiba University : H. Kawai, T. Ooba, Y. Shiino Wakayama Medical University : S. Makino Department of Physics and Astrophysics, Nagoya University : S. Fukui **Department of Physics, Yamagata University** : T. Iwata Department of Physics, Osaka University : S. Ajimura, K. Horie, M. Nomachi, A. Sakaguchi, S. Shimizu, Y. Sugaya Department of Physics and Engineering Physics, University of Saskatchewan : C. Rangacharyulu Laboratory of Nuclear Science, Tohoku University : T. Ishikawa, H. Shimizu Department of Applied Physics, Miyazaki University : T. Matsuda, Y. Toi Institute for Protein Research, Osaka University : M. Yoshimura National Defense Academy in Japan : T. Matsumura **RIKEN** : Y. Nakatsugawa Department of Education, Gifu University: M. Sumihama,

Laser Electron Photon beamline at SPring-8

Questions to be answered

- How are quarks confined in hadrons?
- Why does a constituent quark model work well? (and sometimes not?)
- What are effective degrees of freedom for hadrons?
- How can we learn about the structure of the hadrons from their production and decay?

Backward-Compton Scattered Photon

- 8 GeV electrons in SPring-8 + 351nm Ar laser (3.5eV) → maximum 2.4 GeV photon
- Laser Power ~6 W \rightarrow Photon Flux ~1 Mcps
- E_{γ} measured by tagging a recoil electron $\rightarrow E_{\gamma}>1.5$ GeV, $\Delta E_{\gamma} \sim 10$ MeV
- Laser linear polarization 95-100% \Rightarrow Highly polarized γ beam

Linear Polarization of y beam

ADVANTAGE OF LASER-ELECTRON PHOTON BEAM FOR HADRON PHYSICS

- Hadronic component of a photon contains a large fraction of $s\overline{s}$.
- Isospin dependence is not trivial because a γ contains both I=0 and I=1 components.
- Linear polarization can be used as a parity filter.
- The polarization can be changed easily.

Disadvantage is low interaction rates. \rightarrow Require high beam intensity and large detector acceptance.

Setup of LEPS Detectors

Setup of LEPS Detectors

PID in LEPS Spectrometer

 $\sigma_P \sim 6$ MeV/c for 1 GeV/c $\sigma_{TOF} \sim 150$ ps $\sigma_{MASS} \sim 30$ MeV/c² for 1 GeV/c Kaon

Identification of Hyperon From p/d in LEPS: Missing Mass of K⁺

Λ(1520)

K⁻Decay Asymmetry

Decay Asymmetry

- In K⁺p mode, an asymmetric distribution suggests an interference effect. The fraction of helicity-3/2 component was about 0.5.
 - In K⁻p mode, the helicity-3/2 fraction was around 0.6.

Photoproduction of $\Lambda(1520)$ from p/d

N. Muramatsu et al. (LEPS Collaboration), PRL 103, 012001 (2009)

A Large Isospin Asymmetry in Λ^* Production

S.i. Nam, A. Hosaka, and H.-Ch. Kim, Phys. Rev. D, 71, 114012 (2005)

Backward η productions

Missing mass spectra

Differential cross sections for η photoproduction

Θ+(1530)

uudds

Quasi-free production of Θ^+ and $\Lambda(1520)$

- •Both reactions are quasi-free processes.
- •Fermi-motion should be corrected.
- •Existence of a spectator nucleon characterize both reactions.

Minimum Momentum Spectator Approximation

the minimum momentum for given $|\vec{p}_{CM}|$ and \vec{v}_{CM} .

Results of $\Lambda(1520)$ analysis

Simple (γ ,K⁺) missing mass: No correction on Fermi motion effect.

Proton is assumed to be stopped in the Lab system.

Results of $\Lambda(1520)$ analysis

pK⁻ invariant mass with MMSA: Fermi motion effect corrected.

Results of Θ^+ analysis

Simple (γ ,K⁻) missing mass: No correction on Fermi motion effect.

Neutron is assumed to be stopped in the Lab system.

Results of Θ^+ analysis

nK⁺ invariant mass with MMSA: Fermi motion effect corrected.

Next step

LARGE fluctuations are required if the peak is not real.

High statistics data was already collected in 2006-2007 with the same experimental setup.

Blind analysis is under way to check the O⁺ peak

The result will tell us if the peak structure is due to statistical fluctuations or not unambiguously.

LEPS2

LEPS2 Project at SPring-8

Main Detector Setup

Construction of LEPS2 has been started! Please join us!!

