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Quantum Chromo 
dynamics (QCD)

• QCD at ~100 GeV 
scale has been tested 
accurately;


• And won the Nobel 
prize at 2004. 

The feature of QCD 
at ~0.2GeV or 
nucleon radius scale 
can not be 
calculated 
analytically, which 
corresponds to one 
of seven Millennium 
Prize Problems.

Yang-Mills existence and mass gap：

Prove that for any compact simple gauge group G, a non-trivial quantum Yang–Mills theory 
exists on 4-D euclidean space and has a mass gap。

For QCD, this mass gap is the nucleon mass.

Relative scale comparing to 
the nucleon radius



BMWc, Science 322(2008)1224 

Quantum Chromo 
dynamics (QCD)

• The QCD coupling diverges at 
;


• It corresponds to massive hadron 
mass , where  is the 
number of the valence quarks,


• …except the pseudo Goldstone 
boson likes pion with .

ΛQCD ∼ 300 MeV

≥ nΛQCD n

mπ = 135 MeV



Lattice QCD
QCD can be defined on a discretized 

Euclidean 4D lattice, while it is very 
hard to calculate analytically!

Gμν(k) =
1
k4 (αkμkμ + (gμνk2 − kμkμ))

Can calculate analytically 
to  or more!𝒪(α4

s )

From continuum QFT

To lattice QFT

One of the four directions of HEP

Taking the gluon propagator as an example:

……almost impossible 
to reach 𝒪(α2

s )



QCD can be defined on a discretized 
Euclidean 4D lattice, while it is very 

hard to calculate analytically!

……but we don’t have to.

BMWc, Science 347(2015)1452

Neutron-proton mass difference LO-HVP contribution to g-2

BMWc, Nature 593(2021)7857

Lattice QCD

can reach , up 
to controllable 
uncertainties

𝒪(α∞
s )

Can calculate analytically 
to  or more!𝒪(α4

s )



Basic idea of LQCD  

Quark mass determination

BMWc, Science 322(2008)1224 

BMWc, Nature 593(2021)51

Hadron 
spectrum 


Muon g-2 
from HVP


FLAG, EPJC80(2020)113

Outline



(∂μ∂μ + m2)ϕ = 0 ∑
μ

(ϕ(x + ̂nμ) + ϕ(x − ̂nμ)) + (m2a2 − 2)ϕ(x) = 0

Continuum Lattice

S =
1

p2 + m2
SL =

1

4∑μ Sin2(
apμ

2 )/a2 + m2

EOM

Propagator

Loop

Integral ∫

∞

−∞
d4p ∫

π/a

−π/a
d4p

Require additional regulation 
to be finite 

The divergence has been regularized 
into the 1/an and log(a) terms

Discretized quantum field theory



ψ̄(γμ(∂μ − igAμ) − m)ψ −
1
4

Fa
μνFa

μν, Fμν = ∂μAν − ∂νAμ + ig[Aμ, Aν]

The QCD Lagrangian is the following：

with basic variable  and ψ Aμ

The lattice gauge theory replaces the basic variable  into the gauge link (or Wilson link) :Aμ Uμ

Aμ(x +
1
2

̂nμ) = a4
Uμ(x) − U†

μ(x)
2ig0a

+ 𝒪(a2g2), Uμ(x) ≡ eig0 ∫x+a ̂μ
x dyAμ(y);

x x + a ̂μ

Uμ(x) ≡ eig0 ∫x+a ̂μ
x dyAμ(y), U†

μ(x) ≡ e−ig0 ∫x
x+a ̂μ dyAμ(y) = eig0 ∫x

x+a ̂μ dyAμ(y)

Discretized QCD

Wilson link



• 


• it can also be used to define the gauge field tensor , and also gauge action：

𝒫μν(x) = Uμ(x)Uν(x + a ̂μ)U†
μ(x + a ̂ν)U†

ν (x) = 1 + ig0a2Fμν(x +
a
2

( ̂μ + ̂ν)) −
1
2

a4g2
0Fμν(x +

a
2

( ̂μ + ̂ν))Fμν(x +
a
2

( ̂μ + ̂ν)) + i𝒪(a4)

Fμν

𝒮g =
1

2g2
0

∑
x,μν

Re[1 − Tr[𝒫μν(x)]] =
1
2

Tr[∫ d4xFμνFμν] + 𝒪(a2)

• Such an action has the  discretization error.


• It can combine with the 1x2 loop

to construct the Symanzik or Iwasaki action, to 
suppress the discretization error to 。

𝒪(a2)

𝒫Rect
μν (x) = Uμ(x)Uμ(x + a ̂μ)Uν(x + 2a ̂μ)U†

μ(x + a ̂μ + a ̂ν)U†
μ(x + a ̂ν)U†

ν (x)

𝒪(a4)
x

x + a ̂μ

x + a ̂ν
x + a ̂μ + a ̂ν

x + 2a ̂μ + a ̂ν

x + 2a ̂μ
SSymanzik

g =
5
3

S1x1
g −

1
12

S1x2
g

SIwasaki
g = (1 + 8 × 0.331)S1x1

g − 0.331S1x2
g

Discretized QCD

gauge action



The naive discretization suffers from the doubling problem：


• 


• The propagator has  IR poles at , which is different from the continuum theory.


Staggered fermion:


• , ;


• 16 IR poles  4 IR poles. 


• Mixing between IR poles can be suppressed with kinds of the improvement, likes the so-call highly-improved staggered quark (HISQ).

𝒮Naive
q (m) = ∑

x,y

ψ̄(x)DNaive(m; x, y)ψ(y), DNaive(m; x, y) =
1

2a ∑
μ

γμ(Uμ(x)δy,x+a ̂μ − U†
μ(x − a ̂μ)δy,x−a ̂μ) + mδy,x

1/m pa = (0/π,0/π,0/π,0/π)

ψst(x) = γx4
4 γx1

1 γx2
2 γx3

3 ψ(x) {γst
1 , γst

2 , γst
3 , γst

4 } = {(−1)x4, (−1)x1+x4, (−1)x1+x2+x4,1}

→

Discretized QCD

Naive and Staggered actions

Wilson/CloverStaggered/HISQ Domain wall OverlapCost x10 Cost x10 Cost x10



Wilson fermion action：


• 


• It removes the unphysical IR pole at , while introduce the additional chiral symmetry breaking at .


Clover fermion action:


• 


• Suppress the additional chiral symmetry breaking at .


The cost of either Wilson or Clover action is  of the Staggered fermion.

D + m → D + aD2 + m

pi = π/a 𝒪(αs/a)

D + m → D + aD2 + m + acswσμνFμν

𝒪(α2
s /a)

𝒪(10)

Discretized QCD

Wilson and clover actions

Wilson/CloverStaggered/HISQ Domain wall OverlapCost x10 Cost x10 Cost x10



Ginsparg-Wilson relation: 。


Overlap fermion as a possible solution: 



• In  region, ;


• In  region, .


•
But approximate the sign function  need  cost of the Wilson/Clover 

action.


• Domain wall fermion action is an approximation of overlap fermion with  cost of the Wilson/Clover action.

γ5DGW + DGWγ5 =
1
ρ

DGWγ5DGW

𝒮ov
q (m) = ∑

x,y

ψ̄(x)(δxym + ∑
z

Dov(ρ; x, z)
ρ/a

δzy − Dov(ρ; z, y)/2 )ψ(y), Dov(ρ) = 1 +
Dw(−ρ)

Dw(−ρ)D†
W(−ρ)

p → 0 Dov → aγμpμ

p → π/a Dov → 𝒪(1)
γ5Dw(−ρ)

Dw(−ρ)D†
W(−ρ)

=
γ5Dw(−ρ)

|γ5Dw(−ρ) |
𝒪(100)

𝒪(10)

Discretized QCD

Ginsparg-Wilson action

Wilson/CloverStaggered/HISQ Domain wall OverlapCost x10 Cost x10 Cost x10



Path integral approach of 

quantum field theory 

Harmonic oscillator：


• 


• The paths which deviate from the classical one by a few 
 are curial for the quantized energy levels;


• All the information can be extracted from the above 
partition function.


QCD:


• The partition function is not accessible due to the infinite 
dimension integral of the functional phase space.


• But it is possible to sample in the phase space to 
estimate of the expectation value of given quantities!

⟨q′￼; t′￼|q; t⟩ =
mω
π

e− q′￼2 + q2
2 mω(e−i ω

2 (t′￼−t) + 2q′￼qmωe−i 3ω
2 (t′￼−t) +

−2(q′￼2 + q2)mω + 4q′￼2q2m2ω2 + 1
2

e−i 5ω
2 (t′￼−t) + . . . . ).

ℏ



Stochastic quantization approach of 

quantum gauge theory 

Stochastic quantization for the gauge theory:


• , ;


• 


• Only the gauge invariant correlation functions will be finite when 
;


• Avoid the Faddeev-Popov ghost and Gribov copies.


Hybrid Monte Carlo (HMC):


• Sample the functional phase space following stochastic 
quantization with step size ;


• The gauge dependent correlation function will be zero when we 
replace gauge field  by Wilson link .

H[π, ϕ] = ∑
x

π2(x)
2

+ S[ϕ] P(π(x, τ)) = e−π2/2

dπ(x)
dτ

= −
∂H[π, ϕ]

∂ϕ(x)
= −

∂S[ϕ]
∂ϕ(x)

,
dϕ(x)

dτ
=

∂H[π, ϕ]
∂π(x)

= π(x)

τ → ∞

δτ ∼ ℏ

A U = eig ∫ dxA

Parisi and Wu, Sci.Sin. 24(1981)483 



• Approximate the correlation functions 
defined by the path integral approach,


• with the samples during the stochastic 
quantization evolution at large enough .τ

⟨O[U]⟩ =
∫ [ΠydU(y)]O[U]e−S[U]

∫ [ΠydU(y)]e−S[U]
=

1
n ∑

i

O[U] + 𝒪(
1

n
)

Stochastic quantization + path integral



Case 1: 

Clover+Symanzik, 

243x72,  =0.108 fm,   =300 MeV, 

8 V100 GPUs:


• One week for warn-up;

• Another week for 200 configurations (5 traj. per 

conf.)

• And 13 GB storage.

a mπ

Case 2: 

Mobius DWF+Iwasaki, 

963x192, =0.071 fm,   =140 MeV, 

512 V100 GPUs:


• One year for warn-up;

• Another year for 200 configurations (5 traj. per 

conf.)

• And 2,278 GB storage.

a mπ

Warm-up

Production

Cost of HMC



Basic idea of LQCD 


Quark mass determination

BMWc, Science 322(2008)1224 

BMWc, Nature 593(2021)51

Hadron 
spectrum  

Muon g-2 
from HVP


FLAG, EPJC80(2020)113

Outline



From the time order product ( ):



From the path integral ( ):



All the ground state hadron masses can be obtained with different  and .

𝒪 = ψ̄γ5ψ
⟨𝒪(t)𝒪†(0)⟩ = ∑

n

⟨𝒪(t) |n⟩
e−Ent

2En
⟨n |𝒪†(0)⟩t → ∞

|⟨𝒪(t) |0⟩ |2

2E0
e−E0t

S(x; y) = (D(x; y) + m)−1

⟨𝒪(t)𝒪†(0)⟩ = ∑⃗
x

⟨Tr[S( ⃗0 ,0; ⃗x , t)γ5S( ⃗x , t; ⃗0 ,0)γ5]⟩ = ∑⃗
x

⟨Tr[S†( ⃗x , t; ⃗0 ,0)S( ⃗x , t; ⃗0 ,0)]⟩

𝒪 m

C. Alexandrou, et,al. ETMC, PRD104(2021)074515

meff
N =

1
a

log
⟨𝒪(t − a)𝒪†(0)⟩

⟨𝒪(t)𝒪†(0)⟩

Hadron mass from Lattice QCD

⟨𝒪(t)𝒪†(0)⟩fit = C0e−mNt(1 + C1e−δmt)



The light quark masses
From lattice QCD

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):


• ;


• ;


• ;


• ;


• ;


•

mp = 938.27 MeV = mp,QCD + 1.00(16) MeV + . . .

mn = 939.57 MeV

m0
π = 134.98 MeV

m+
π = 139.57 MeV = m0

π + 4.53(6) MeV + . . .

m0
K = 497.61(1) MeV = m0

K,QCD + 0.17(02) MeV + . . .

m+
K = 493.68(2) MeV = m+

K,QCD + 2.07(15) MeV + . . .

X. Feng, et,al. PRL128(2022)062003

D. Giusti, et,al. PRD95(2017)114504

Sz. Borsanyi, et,al. Science347(2015)1452

 (lattice spacing)(mbare
u + mbare

d )/2 and a

αbare
s

(mp,QCD + mn)/2 = 938.4(1) MeV

mbare
u , mbare

d and mbare
s



The light quark masses
Lattice spacing dependence

αbare
s (a)

mbare
l (a) (MeV)

mbare
s (a) (MeV)

A. Bazavov, et,al., MILC, PRD87(2013)054505

 (lattice spacing)(mbare
u + mbare

d )/2 and a

αbare
s

mbare
u , mbare

d and mbare
s

The lattice spacing 
a is very sensitive to 
the bare coupling;


The light quark 
mass to satisfy the 
condition is very 
small;


Renormalization is 
needed to convert 
the result to MS-bar.



Ensembles used by 

Science 322(2008)1224 

BMWc, Science 322(2008)1224 

•  box in most of the cases


• Check the finite volume dependence using a few 
ensembles. 

23 × (4 − 6) fm4

• The lattice spacing dependence is mild given the 
precision required.


• The  dependence of  is relatively weak and 
can be used to set the scale.

mπ mΩ



Finite volume 
effect

• One would need  to be free 
of the finite volume effect.


• Most of the ensembles can have 
obvious finite volume correction 
based on above criteria. 

mπL ∼ 4

mπ = 330 MeV

BMWc, Science 322(2008)1224 



Final results

BMWc, Science 322(2008)1224 

• They used the physical value of either 
 or  as input to set the lattice 

spacing.


• The results are consistent with each 
other within the uncertainty.

mΞ mΩ



From 2008 to 2015

BMWc, Science 322(2008)1224 BMWc, Science 347(2015)1452

• 1+1+1+1 instead of 2+1;


•  becomes smaller at the same lattice 
spacing, due to additional dynamical charm flavor;


• Much larger box at the same lattice spacing, and 
then finite volume effect is highly suppressed.

Nf = Nf =

β = 6/g2

~0.125 fm

~0.085 fm

~0.065 fm

~0.102 fm

~0.089 fm

~0.077 fm

~0.064 fm



• With the simulation on the ensembles 
with , they obtain the QED 
correction of the neutron-proton mass 
difference to be ~-1.00(7)(14) MeV.


• It suggests that the neutron can be 
lighter than proton when .

e ∼ 𝒪(1)

α ≥ 2αphys

QED corrections:

BMWc, Science 347(2015)1452



300 MeV 300 MeV 300 MeV

• Three different  with the lightest  smaller than 200 MeV, or one 135 
MeV and another 200 MeV;

• Three lattice spacings , with two of  fm, and ;

• , or at least three volumes.

mπ mπ mπ ∼
mπ <

a a < 0.1 (amax /amin)2 ≥ 2

(mπ,min/Mπ,phys)2exp{4 − mπ,minL} < 2
mπ

a
0.10 fm0.05 fm0

150 MeV

mπ

a
0.10 fm0.05 fm0

150 MeV

0.20 fm0.15 fm

Configurations：

Lattice QCD FLAG criteria

• HISQ action

• Clover action

• DomainWall action

mπ

0.10 fm0.05 fm0

150 MeV

0.15 fm

MILC collaboration CLS collaboration RBC/UKQCD collaboration



• Our clover ensembles with multiple lattice spacings，a=0.11/0.08fm;

• First lattice QCD calculation on  form factor；

• Predict  with the Belle experiment.

• It is essential to improve the ensembles sets to control the systematic uncertainty from lattice 
spacing and pion mass.

Ξc → Ξ

|Vcs | = 0.834(127)exp(74)th

ITP+SJTU+NNU

Q.-A. Zhang et al., CPC 46(2022)011002, arXiv:2103.07064

a
0.10 fm0.05 fm0

300 MeV

150 MeV

mπ

Configurations in China：

Form factor



a
0.10 fm0.05 fm0

300 MeV

150 MeV

mπ

H. Liu, J. He et al., arXiv:2207.00183

Configurations in China：

Hadron spectrum 

• Our clover ensembles with 3 lattice spacings，a=0.11/0.08/0.06 fm and two pion masses;

• First lattice QCD calculation on hidden charm hexaquark spectrum；

• The ground state mass (3.95(3) for  channel) is much lower than the  
threshold (4.938 GeV), but close to that of .

• The “real” hexaquark state can be hidden in the excited states of .

0−+ Ξc − Ξ̄c
ηcK+K−

ηcK+K−

ITP+SJTU+IMP

ln
CO(6)(t)

Cηc
(t)C2

K(t)



• Three different  with the lightest  smaller than 200 MeV, or one 
135 MeV and another 200 MeV;

• Three lattice spacings , with two of  fm, and 
;

• , or at least three volumes.

mπ mπ
mπ ∼ mπ <

a a < 0.1
(amax /amin)2 ≥ 2

(mπ,min/Mπ,phys)2exp{4 − mπ,minL} < 2
mπ

a
0.10 fm0.05 fm0

300 MeV

150 MeV

a
0.10 fm0.05 fm0

300 MeV

150 MeV

a
0.10 fm0.05 fm0

300 MeV

150 MeV

mπmπ

Enough 
configurations 
obtained

Input parameters 
determined

Current status Present FLAG “Green 
star” requirement

Requirement to 
control all the 

systematic 
uncertainties

1-2 years 2-3 years

Configurations in China：

Towards the FLAG criteria

• Generate the configurations using the 
domestic super computers is the 
foundation of any high-precision lattice 
QCD study. 


• FLAG criteria is the current status-of-the-
arts in the lattice community. 


• Major contributors：P. Sun, L. Liu, YBY, 
W. Sun…



Basic idea of LQCD 


Quark mass determination

BMWc, Science 322(2008)1224 

BMWc, Nature 593(2021)51
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spectrum 


Muon g-2 
from HVP


FLAG, EPJC80(2020)113

Outline



The quark masses
Bare values

mbare
l (a) (MeV)

mbare
s (a) (MeV)

A. Bazavov, et,al., MILC, PRD87(2013)054505

The bare quark mass depends on 1/a 
logarithmically.


The widely used  scheme can not be 
apply to the bare quark mass, as the 
dimension change  doesn’t exist on the 
lattice.


Non-trivial renormalization is needed to 
convert the bare quark masses to MS-bar.

MS

2ϵ

mbare
c (a) (MeV)



• The Feynman rule under the lattice 
regularization can be extracted in the weak 
coupling limit.


• It approaches to the continuum form in the  
limit.


• But the Feynman rule of the multi-gluon vertex is 
very complicated, especially for the improved 
discretized actions.


• For example, the 4-gluon vertex of the simplest 
Wilson gauge actions 




With :

a → 0

SG =
1

2g2
0

∑
x,μν

Re[1 − Tr[𝒫μν(x)]] =
1
2

Tr∫ d4xFμνFμν + 𝒪(a2)

𝒫μν(x) = Uμ(x)Uν(x + a ̂μ)U†
μ(x + a ̂ν)U†

ν (x)

H. Rothe, 《Lattice 
Gauge Theories, An 
Introduction》, Eq.15.53

Lattice regularization
Feynman rules



U(x) ≡ eig0 ∫x+a ̂μ
x dyAμ(y) :

Taking the simplest Wilson fermion as example: 

where

There is a g-g-q-q vertex at :𝒪(a)

Such a vertex is  at tree level, but it can introduce  
correction at quantum level! 
𝒪(a) 𝒪(αs)

𝒮W
q (m) = ∑

x,y

ψ̄(x)Dw(m; x, y)ψ(y), Dw(m; x, y) =
1

2a ∑
μ

((1 + γμ)Uμ(x)δy,x+a ̂μ + (1 − γμ)U†
μ(x − a ̂μ)δy,x−a ̂μ) − (m +

4
a

)δy,x

Lattice regularization
Additional vertex



ZRI
Q (p2) = 1 +

g2CF

16π2
[(1 − ξ)log(a2p2) + BQ + 4.79ξ] + O(a2p2) + O(g4)

Taking the quark self energy as an example：

The result can be quite different finite  corrections with different 
discretization：

𝒪(αs)

Gauge actions
Fermion actions

Lattice regularization
Loop correction



The light quark masses
Renormalization

The RI/MOM renormalization targets to 
cancel the  divergences using the 
off-shell quark matrix element;


Up to the  correction which can be 
eliminated by the  extrapolation.

αslog(a)

𝒪(a2p2)
a2p2 → 0

Non-
perturbative IR 
region can only 
be calculate by 

Lattice QCD 

UV region 
with 

obvious 
regularizat
ion effects

Perturbative 
region 

accessible by 
kinds of the 

regularizations

G. Martinelli, et.al, NPB445(1995)81, arXiv: hep-lat/9411010

mMS
q (μ) =

ZMOM,Lat
m (Q,1/a)

ZMOM,Dim
m (Q, μ, ϵ)

ZMS,Dim
m (ϵ)mLat

q (1/a) + 𝒪(am, αn
s )



Λp,p,Γ

Γ
pp

The regularization-independent 
momentum subtraction scheme

First of all, we introduce a perturbative calculable scale ，

Then we can calculate the quark propagator  ，


And also vertex function
 under the 

Landau gauge.


Eventually we can define the RI/MOM renormalization condition as the 

following: 。


It can be applied to any regularization scheme.

Q2 = − p2

S(p) = ∑
x

e−i(p⋅x)⟨ψ(x)ψ̄(0)⟩

Λ(p, p, Γ) = S−1(p)∑
x,y

e−i p⋅(x−y)⟨ψ(x)ψ̄(0)Γψ(0)ψ̄(y)⟩S−1(p)

12ZRI
q (Q)

Tr[Γ†Λ(p, p, Γ)]p2=−Q2

=
C0

mn
q

+ ZMOM
S (Q) + 𝒪(mq)



• The RI/MOM renormalization constant of the quark mass under the lattice regularization is: 


             
;


• The RI/MOM and  renormalization constants under the dimensional regularization are: 


             


                 


• Thus the renormalized quark mass under the  scheme can be defined by:

ZMOM,Lat
m (Q,1/a, ξ) = (ZMOM,Lat

S (Q,1/a, ξ))−1 = ⟨q |𝒪 |q⟩Lat = 1 +
αsCF

4π
[−3log(a2Q2) − ξ + bS] + 𝒪(α2

s , a2Q2)

MS

ZMOM,Dim
m (Q, μ, ϵ, ξ) = ⟨q |𝒪 |q⟩Dim = 1 +

αsCF

4π
[
3
ϵ̃

− 3log(
Q2

μ2
) − ξ + 5] + 𝒪(α2

s )

ZMS,Dim
m (Q, μ) = 1 +

αsCF

4π
3
ϵ̃

+ 𝒪(α2
s )

MS

RI/MOM scheme 
Perturbative calculation

mMS
q (μ) =

ZMOM,Lat
m (Q,1/a, ξ)

ZMOM,Dim
m (Q, μ, ϵ, ξ)

ZMS,Dim
m (ϵ)mLat

q (1/a) + 𝒪(a2mQ2m, αn
s )



RI/MOM scheme 
Discretization errors

Original lattice results  term subtracted𝒪(a2p2)

ZMOM,Lat
m (Q, a,0) = (ZMOM,Lat

S (Q, a,0))−1

F. He, et.al, QCD, arXiv: 2204.09246χ

The discretization is 
sizable at  fm;


Becomes much smaller 
after the  
correction is removed;


The higher order   
correction can also be 
removed in the practical 
calculation. 

a ∼ 0.1

𝒪(a2p2)

a2np2n



The light quark masses
Renormalization

mMS
q (μ) = ZMS,Lat

m (μ,1/a)mLat
q (1/a) + 𝒪(a2mQ2m, αn

s )

F. He, et.al, QCD, arXiv: 2204.09246χ

mbare
l (a) (MeV)

mbare
s (a) (MeV)

mbare
c (a) (MeV)

ZMS
m (μ) = (ZMS

S (μ))−1 =
ZMOM,Lat

m (Q,1/a, ξ)
ZMOM,Dim

m (Q, μ, ϵ, ξ)
ZMS,Dim

m (ϵ) |a2Q2→0 + 𝒪(α4
s )

The scalar renormalization 
constant  shares the 
similar lattice spacing 
dependence as the bare quark 
mass ;


The renormalized quark mass 

should 

be free of .

ZMS
S (μ)

mLat
q (1/a)

mMS
q (μ) =

mLat
q (1/a)

ZMS,Lat
S (μ,1/a)

1/a

A. Bazavov, et,al., MILC, PRD87(2013)054505



D. Zhao, et.al., QCD, in preparationχ

Using  as input;

corresponds to 

.

mJ/ψ = 3097 MeV
mc(2 GeV) = 1.16(1) GeV
mc(mc) = 1.332(9) GeV

The charm quark masses
From lattice QCD

4% higher than the current FLAG average of 
, corresponds to 6% for .mc(mc) mc(2 GeV)



Light quark masses
From lattice QCD

• QCD prediction of the 
light and strange quark 
masses are also higher 
than the current FLAG 
averages which uses 
the SMOM scheme;


• while consistent with 
that from ETM using the 
RI/MOM scheme.

χ

FLAG, EPJC80(2020)113

A. T. Lytle, et.al., HPQCD, PRD98(2018)014513

Preliminary result from QCDχ



p p′￼

(p′￼− p)2 = 0

p p′￼

(p′￼− p)2 = p2

• MOM scheme: The 
zero momentum 
transfer at the current 
can introduce 
additional mixing/non-
perturbative effect;

• SMOM scheme: 
Requiring the 
momentum transfer 
to be non-zero can 
avoid such a problem.

Y. Aoki, et.al, PRD78(2009)054520, 0712.1061

C. Sturm. et.al, PRD90(2009)014501, 0901.2599


MOM v.s. SMOM



ZMOM
S

F. He, et.al, QCD, arXiv: 2204.09246χ

SMOM scheme 
Discretization errors

•   has much larger 
discretization error 
comparing to , and 
require very careful 
treatment.


• Eventually both the MOM 
and SMOM should 
provide consistent  
result, as we verified 
here.

ZSMOM
S

ZMOM
S

MS
ZSMOM

S



Basic idea of LQCD 


Quark mass determination

BMWc, Science 322(2008)1224 

BMWc, Nature 593(2021)51

Hadron 
spectrum 


Muon g-2 
from HVP 

FLAG, EPJC80(2020)113

Outline



• The magnetic moment  of the fermion should be 2 based on the non-realistic 

of the Dirac equation: ;


• The quantum effect introduces a correction: 
.


• Standard model prediction: ;


• Experiment measurement:  .

g
(H − eA0)2

2m
ψ = (

m
2

+
⃗P − e ⃗A )2

2m
− 2

e
2m

⃗B ⋅ ⃗S + . . . )ψ

g = 2 +
αR

π
+ 𝒪(α2

R) = 2.00232 + 𝒪(10−5)

ath =
g − 2

2
= 1159652181.6(2) × 10−12

aex =
g − 2

2
= 1159652181.3(2) × 10−12

Anomalous magnetic moment

of electron



gμ = 2(1 + aμ) = 2(1 +
e2

2π
+ 𝒪(e4)) ∼ 2 * 1.00116……

Experimental result of muon g-2 muon g-2  from standard model prediction

Anomalous magnetic moment

of muon



Leading order HVP contribution

to g-2

• LO-HVP contribution is crucial to understand the muon g-2 
tension.


• Standard model prediction from the R-ratio suggests 
;


• The present experiment requires for no new physics is .


• This tension is suppressed by  in the electron g-2 and 
then comparable with the other uncertainties.

ā ≡ aLO−HVP
μ × 1010 = 692.8(2.4)

ā = 718(4)

m2
e /m2

μ

 A. Keshavarzi, D. Nomura,
 and T. Teubner, PRD101(2020)014029

aLO−HVP
μ = 4α2 ∫

∞

0

dq2

m2
μ

f(
q2

m2
μ

)(Π(q2) − Π(0))

Πμν(q) = ∫ d4xeiqx⟨jμ(x)jν(0)⟩ = Π(q2)(q2δμν − qμqν), jμ = ∑
f=u,d,s,c...

Qf ψ̄f γμψf



 A. Keshavarzi, D. Nomura,
 and T. Teubner, PRD101(2020)014029

σ(e+e− → hadrons)/σ(e+e− → μ+μ−)
• The HVP contribution can be 

extracted from the famous R-ratio 
which was used to confirm 

:


• ;








•  can also be calculated from 
LQCD directly.

Nc = 3

aLO−HVP
μ = ∫ dt ω(t)C(t)

ω(t) = 4α2 ∫
∞

0

dq2

m2
μ

f ( q2

m2
μ ) [ cos(tq) − 1

q2
+

1
2

t2]
C(t) = 1/(12π2)∫

∞

0
d( s)R(s)se− st

C(t)

Leading order HVP contribution

from R-ratio



 T. Blum,  RBC, PRL121(2018)022003

Leading order HVP contribution

from RBC/UKQCD

• RBC result of  
is consistent with 
that from R-ratio 
in all the range,


• and has smaller 
uncertainty in the 
medium range of 
.


• Thus they also 
present a LQCD-
RR combined 
prediction 693(3),  
together with the 
pure LQCD 
prediction 715(18).

C(t)

t



BMWc, Nature 593(2021)51

Leading order HVP contribution

from BMWc

• 


         ;


• BMW HVP result suppress the uncertainty by a 
factor of 3 and reach the 1% precision;


• The charm and disconnected contributions 
cancel each other within the uncertainty;


• Connected and disconnected part of 
 almost cancel each other;


• The QED contributions are negligible.

C(t) =
5
9

Ccon(t; ml) +
1
9

Ccon(t; ms) +
4
9

Ccon(t; mc) + Cdis(t)

+αCQED(t) + ΔmCSIB(t) + 𝒪(α2, αΔm, Δm2)

ΔmCSIB(t)



BMWc, Nature 593(2021)51

Ensembles used by BMWc



• The upper/lower band of the light 
quark contribution is defined by:


• 


• 


• One can take the value at  where 
 to suppress the 

uncertainty.

aLO−HVP
μ,lower band = ∫

tc

0
dt ω(t)C(t)

aLO−HVP
μ,upper band = ∫

tc

0
dt ω(t)C(t) + ∫

∞

tc

dt ω(t)C(Tcut)e
−2 m2

π + ( 2π
L )2

tc
aLO−HVP

μ,lower band = aLO−HVP
μ,upper band

Bounding method

for alight

μ



Lattice spacing dependence

of alight

μ

• The original result is obviously non-
linear and kinds of the analytical 
corrections are applied;


• The distribution of kinds of fits 
looks like a Gaussian one and the 
central value is around 640.


• But the continuum extrapolation 
based on the original data can be 
much higher…



BMWc, Nature 593(2021)51

• The present BMWc result is in the 
middle of the R-ratio and “no new 
physics requirement”.


•  cheaper fermion action 
(comparing to the RBC/UKQCD 
setup) is used to obtain the results 
at smaller lattice spacing.


• The result requires further 
verification from the other groups.

O(100)

Leading order HVP contribution

from kinds of LQCD groups



QCD effortsχ

……

……

G. Wang, et.al., QCD, 
arXiv: 2204.01280

χ



Leading order HVP contribution

in the “window”

M. Ce, et.al., arXiv: 2206.06582

• The “window” value 
is much easier to be 
precise and accurate 
from LQCD;


• and then become a 
good way to verify 
the consistency 
between different 
LQCD groups;


• There are still some 
tensions which can 
be resolved within 
one year or so.



G. Wang, et.al., QCD, in preparation χ

QCD effortsχ
on the total contribution



Summary

• LQCD: using the samples from stochastic quantization to simulate the 
correlation function of path integral;


• State-of-the-arts ensembles are the foundation of the high accuracy LQCD 
prediction, and the efforts in China are in progress;


• Renormalization issue we found should be verified by the other 
collaborations, before high accuracy quark mass prediction can be made;


• LO-HVP contribution of muon g-2 is converging, while more efforts are 
needed.


