

Observation of several new tetraquark states at the LHCb experiment

Wenbin Qian (钱文斌) University of Chinese Academy of Sciences

(中国科学院大学)

EPC seminar @ IHEP 2022/07/08

Outline

- Introduction
- A general amplitude analysis tool: TF-PWA
- First observation of a double charged tetraquark state and its neutral partner
- First observation of a resonant structure near $D_s^+D_s^-$ threshold
- Conclusion

Composition of nature

古代哲学

网络图片

Atomic spectrum

赛先生

Measurements

Empirical summary

Balmer's equation:

$$\lambda = 365.46 \frac{n^2}{n^2 - 2^2} \text{nm}, \quad n = 3,4,5,\dots$$

Rydberg's equation:

$$\sigma = \frac{1}{\lambda} = R(\frac{1}{n_f^2} - \frac{1}{n_i^2}) \qquad R = 1.0973731534 \times 10^7 \,\mathrm{m}^{-1}$$

$$n_f = 1, 2, 3, 4, \dots, \quad n_i = n_f + 1, n_f + 2, n_f + 3, \dots$$

Bohr model

Surprisingly successful model

- Most of particles can be explained by a picture of two partons or three partons
- Very simple picture to explain very complicated QCD
- Not even understand why this picture is successful

Our understanding of proton

Constituent quarks

Parton distributions

$$\bar{d}(x) = \bar{u}(x)$$

$$\bar{s}(x) = s(x)$$

Garvey & Peng, Prog. Part. Nucl. Phys. 47, 203 (2001)

- Deep inelastic scattering and Drell-Yan process tell us: $\int (\overline{d(x)} \overline{u(x)}) dx \sim 0.12$
- Spin crisis of proton

expt.:
$$\Delta u \in [0.82, 0.85], \ \Delta d \in [-0.45, -0.42], \ \text{and} \ \Delta s \in [-0.11, -0.08]$$

$$\Delta q \equiv \int_0^1 [q(x)\uparrow + \bar{q}(x)\uparrow - q(x)\downarrow -\bar{q}(x)\downarrow] dx.$$

A different picture of proton

Current picture

30% of 5-quark component in proton

Meson cloud picture: Thomas, Speth, Henley, Meissner, Miller, Weise, Oset, Brodsky, Ma, ...

$$\begin{array}{l} \mid p> \, \sim \, \mid \, uud> \, + \, \epsilon_1 \mid n \, (\,\, udd \,\,) \,\, \underline{\pi^+}(\,\,\, du \,\,)> \\ + \, \epsilon_2 \mid \Delta^{++} \, (\,\, uuu \,\,) \,\, \pi^-(\,\,\, ud \,\,)> \, + \, \epsilon' \mid \Lambda \, (uds) \,\, K^+ \, (\,\,\, su \,\,)> \ldots \end{array}$$

Penta-quark picture: Riska, Zou, Zhu, ... $|p>\sim |uud> +\epsilon_1|[ud][ud]\overline{d}> +\epsilon'|[ud][us]\overline{s}> +...$

Slides borrowed from B. Zou

History

- X(3872): first tetraquark candidates, now called $\chi_{c1}(3872)$
 - Main motivation for exotic: mass different from prediction
- $Z_c(3900), Z_c(4200), Z_c(4430)$: charged exotics
 - Clearly not charmonia, smoking gun; though hidden charm
- P_c states: pentaquarks!
- X(5568): four different flavors!
 - However, negative conclusions from other experiments
- $X_{0,1}(2900)$: four different flavors, open charmed
 - Needs confirmation from other decays
- T_{cc}^+ : not with hidden charm, but with cc quarks
- X(6900): four charm quarks $c\overline{c}c\overline{c}$

Current task: understanding inner structures of these exotic hadrons

Similar picture as proton

 $c \bar{c}$ MESONS (including possibly non- $q \overline{q}$ states)

$$\chi_{c1}(3872)$$
 $I^G(J^{PC}) = 0^+(1^{++})$ also known as $X(3872)$

Experimental tasks:

Discover more and understand them through production and decays

$$\frac{\Gamma(X(3872) \to \bar{D}D^*)}{\Gamma(X(3872) \to J/\psi\pi^+\pi^-)} = 9.1^{+3.4}_{-2.0}$$
$$\frac{\Gamma(Z_c(3885) \to \bar{D}D^*)}{\Gamma(Z_c(3885) \to J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7$$

The LHCb experiment

Excellent vertex and IP, decay time resolution:

- $\sigma(IP) \approx 20 \ \mu m \text{ for high-} p_T \text{ tracks}$
- $\sigma(\tau) \approx 45$ fs for $B_s^0 \to J/\psi \phi$ and $B_s^0 \to D_s^- \pi^+$ decays Very good momentum resolution:
- $\delta p/p \approx 0.5\% 1\%$ for $p \in (0,200)$ GeV
- $\sigma(m_B) \approx 24$ MeV for two-body decays

Hadron and Muon identification

- $\epsilon_{K \to K} \approx 95\%$ for $\epsilon_{\pi \to K} \approx 5\%$ up to 100 GeV
- $\epsilon_{\mu \to \mu} \approx 97\%$ for $\epsilon_{\pi \to \mu} \approx 1 3\%$

Data good for analyses

• > 99%

Designed for CP violation and heavy flavor studies

More on LHCb

- Start to take data from 2010
- Run 1:
 - 2011 (7 TeV): 1 fb⁻¹
 - 2012 (8 TeV): 2 fb⁻¹
- Run 2:
 - 2015-2018 (13 TeV): 6 fb⁻¹
- A new LHCb starts this year

A collision in the LHCb detector

2021/04/15

Extract resonant information

- Most exotic states and their properties established in multi-body decays
- Amplitude analyses crucial

- Amplitude analyses very complicated: main limitations to start an analysis
- Enormous data from BESIII, LHCb and other flavor physics experiments: massive CPU time needed to perform analyses
- A general PWA framework using modern acceleration technology (such as GPU, AD,...)
 eagerly needed
- We have developed a new framework using TensorFlow

2022/07/08

TensorFlow

TF-PWA

A general and user-friendly partial wave analysis framework

Hao Cai¹, Chen Chen⁵, Yi Jiang², Pei-Rong Li³, Yin-Rui Liu², Xiao-Rui Lyu², Rong-Gang Ping⁴, Wenbin Qian², Mengzhen Wang⁵, Zi-Yi Wang², Liming Zhang⁵, Yang-Heng Zheng²

¹WHU, ²UCAS, ³LZU, ⁴IHEP, ⁵THU

- Joint efforts + experience on previous analyses + very good students
- Cross-checks performed with several independent fitters developed previously for dedicated analyses: e.g. $Z(4430)^+$ and pentaquark search, $B^0 \to \overline{D^0}\pi^+\pi^-$ analysis etc.

Features

Based on Tensor-Flow v2 GPU based • Vectorized calculation **TensorFlow** • Fast **Automatic differentiation** General Custom model available Simple configuration file • Easy to use Automatics process All necessary functions implemented Open access and well supported https://gitlab.com/jiangyi15/tf-pwa

Framework

Topology based algorithm

Decay group

Decay chain

$$\tilde{A} = A_1 R A_2 + \cdots$$

Decays

$$B^{0} \to D_{s1}^{*}(2700)^{+}D^{*-}$$

$$B^{0} \to D_{s1}^{*}(2860)^{+}D^{*-}$$
etc.

Wigner D-matrix:

$$A = FD^{*J}(\phi, \theta, 0)$$

Particles

initial state (B^0) , final states (D^{*-}, D^0, K^+) propagator $(D_{s1}^*(2700))$

Breit-Wigner: R(m), Other user defined function

$$\mathcal{A} = \tilde{A}_1 + \tilde{A}_2 + \cdots$$

Benchmarks

CPU: i7-9750H@2.6 Hz with 12 cores

GPU: Nvidia 1660 Ti, a cheap GPU

Test based on simple MC (200000) sample of a simple amplitude model of $e^+e^- \to R_1(1^+)\pi$, $R_1 \to D^*D^*$

Both based on TF-PWA

process	CPU (ms)	GPU (ms)	Ratio
$N = \int A ^2 d\Phi$	573	53	~11 X 12 = 132
N with $\frac{\partial N}{\partial \vartheta}$	1122	117	$\sim 9.5 \text{ X } 12 = 114$

Almost a factor of 100 times faster for GPU than single CPU core.

Automatic differentiation cost the same time as normal evaluation, faster with increase of parameters

Functions implemented

- Toy studies
- Plotting
- Fit fractions, interference fractions Resolution
- Simultaneous fit between different Simple symbolic formula datasets
- Parity conversation
- Gaussian constraints on parameters .
- 2D chi2 test
- CP violation fit

- Final states with identical particles
- Amplitude factorization

- Model independent fit
- Error propagation

Used in many LHCb/BESIII analyses, including those discussed below

Observation of a double-charged tetra-quark states and its isospin partner

LHCb-PAPER-2022-026 LHCb-PAPER-2022-027

Feynman diagrams

• Two decays considered: $B^0 \rightarrow \overline{D^0}D_s^+\pi^-$, $B^+ \rightarrow D^-D_s^+\pi^+$

Connected by isospin relationship in all aspects

Signal yields

• Two decays considered: $B^0 o \overline{D^0} D_s^+ \pi^-$, $B^+ o D^- D_s^+ \pi^+$

- Very pure samples, ideal for amplitude analysis
- \sim 4000 B^0 signals with a purity of \sim 90%;
- \sim 3750 B^+ signals with a purity of \sim 95%

Preliminary

First impression on Dalitz plot

- Very similar distributions over Dalitz plot
- Clear accumulation of events on both channels around 2.9 GeV of $m(D_s^+\pi^-)$ and $m(D_s^+\pi^+)$
- $D^{*-}(2010)$ cut-off in B^{0} channel; small isospin breaking effects at threshold
- Very clear contributions from $D_2(2460)$

Amplitude analysis

Unbinned maximum likelihood fits performed with TF-PWA

$$P(x;\Theta) = f_{\text{sig}} \cdot P_{\text{sig}}^{\text{norm}}(x;\Theta) + f_{\text{bkg}} \cdot P_{\text{bkg}}^{\text{norm}}(x),$$

Fractions determined from mass fits

Background modelled from upper sideband with extrapolating into signal regions

• Signal PDF:
$$P_{\mathrm{sig}}^{\mathrm{norm}}(x;\Theta) = \frac{\epsilon(x)|\mathcal{A}(x;\Theta)|^2}{I_{\mathrm{sig}}(\Theta)}$$
. Normalization factor

- Efficiencies obtained from full simulation with corrections for data-simulation difference
- Amplitude model: $A(x; \Theta) = \sum c_i \cdot A_i(x; \Theta_i)$,

Angular distribution + line shape (RBW etc.)

D^* resonances

- D^* main contributors for the Dalitz distribution,;
- Current observed D* states

Resonance	J^P	Mass (GeV)	Width (GeV)
$D^*(2007)^0$	1-	2.00685 ± 0.00005	$< 2.1 \times 10^{-3}$
$D^*(2010)^-$	1-	2.01026 ± 0.00005	$(8.34 \pm 0.18) \times 10^{-5}$
$D_0^*(2300)$	0+	2.343 ± 0.010	0.229 ± 0.016
$D_2^*(2460)$	2+	2.4611 ± 0.0007	0.0473 ± 0.0008
$D_1^*(2600)^0$	1-	2.627 ± 0.010	0.141 ± 0.023
$D_3^*(2750)$	3-	2.7631 ± 0.0032	0.066 ± 0.005
$D_1^*(2760)^0$	1-	2.781 ± 0.022	0.177 ± 0.040
$D(3000)^0$??	3.214 ± 0.060	0.186 ± 0.080

- $D^*(2007)^0$ and $D^*(2010)^-$ close to threshold, small isospin violation effects seen
- PDG currently gives average masses and widths for D^{**} states
- $D_1^*(2600)^-$, $D_1^*(2760)^-$, $D(3000)^-$ not observed yet
- Spin-parity of $D(3000)^0$ not established yet

D* contributions

- Different models for $D^*(2007)^0$ and $D^*(2010)^-$, though shapes turn out to be similar
- S-wave can be described by RBW + NR,
 however, to avoid unitarity problem, a spline
 function used, offering better and conservative
 description
- $D_1^*(2600), D_1^*(2760), D(3000)$ not significant, however, still included conservatively
- Generally very good description of $m(D\pi)$ spectrum

Exotics

- Not very good description on $m(D_s\pi)$ around 2.9 GeV
- Further $m(D\pi)$ or $m(DD_s)$ contributions not help
- Add new states on $m(D_s\pi)$, $T_{c\bar{s}}^a(2900)^0$ and $T_{c\bar{s}}^a(2900)^{++}$ help a lot

More on exotics

- Isospin relationship imposed on $m(D\pi)$, apart from $D^*(2010)$ and $D^*(2007)$, confirmed by separate fits
- Two scenarios considered for $T^a_{c\bar{s}}(2900)^0$ and $T^a_{c\bar{s}}(2900)^{++}$: with and without isospin relationship

Scenarios	Exotics	Mass (GeV)	Width (GeV)	Significance
No isospin	$T_{c\bar{s}}^{a}(2900)^{0}$	$\textbf{2892} \pm \textbf{14} \pm \textbf{15}$	$119\pm26\pm12$	8.0σ
relationship	$T_{c\bar{s}}^{a}(2900)^{++}$	$2921 \pm 17 \pm 19$	$137 \pm 32 \pm 14$	6.5σ
With isospin relationship	Both	$2908 \pm 11 \pm 20$	$136 \pm 23 \pm 11$	9.0σ

- Significance estimated considering look-else-where effects
- Two states consist with each other: isospin triplet
- $J^P = 0^+$ preferred for both cases

Spin analysis

- Toys generated for spin analysis: 0^+ preferred over 1^- (second best solution) by 7.6σ
- 0⁺ is also significantly preferred when exotics not constrained by isospin

Argand diagram

- Replacing RBW description of exotic states with splines (no model assumption)
- Spline description consist with RBW behavior

Discussion

- In $B^+ \to D^+ D^- K^+$ decays, two states observed with quark content $cs\overline{u}\overline{d}$
- $T_{cs}^a(2900)$ have quark content $c\overline{s}\overline{u}d$ and $c\overline{s}u\overline{d}$
- Very similar mass, $T_{cs}^a(2900)$ has larger width
- Only $0^+ T_{cs}^a(2900)$ states found

Preliminary

Exotic	Mass (MeV)	Width (MeV)	Spin-parity
$X_0(2900)$	$2866 \pm 7 \pm 2$	$\textbf{57} \pm \textbf{12} \pm \textbf{4}$	0+
$X_1(2900)$	$\textbf{2904} \pm \textbf{5} \pm \textbf{1}$	$\textbf{110} \pm \textbf{11} \pm \textbf{4}$	1-
$T_{c\bar{s}}^a(2900)^0$	$2892 \pm 14 \pm 15$	$119\pm26\pm12$	0+
$T^a_{c\bar{s}}(2900)^{++}$	$2921 \pm 17 \pm 19$	$137\pm32\pm14$	0+

- X(5568) claimed by D0 collaboration in $B_s^0\pi^{\pm}$ final states, with quark flavor $b\bar{s}\bar{u}d$, however, negative results from other experiments
- Some suggestions for $T_{cs}^a(2900)$ (1705.10088, 2204.02649, 2008.07145, 2008.07340 et al.)

Charge

• For double charged tetraquark candidates, if molecular, replusion potential around 1.44 MeV @ 1 fm!

- If compact states, all four quarks have positive charge
- Or may be just cusp

Isospin

- $T_{c\bar{s}}^a(2900)^0$ and $T_{c\bar{s}}^a(2900)^{++}$ are two of the isospin triplet;
- Missing one $(D_s^+\pi^0)$, hard for LHCb, though not entirely impossible;
- Some suggests $D_s^+(2317)$ (decaying into $D_s^+\pi^0$) to be a tetraquark state; though no clue from current charged pion modes (contamination from $D_2(2460)$)
- I = 0 considered to have strong attraction while I = 1 to have weak attraction or

Observation of a resonant structure near the $D_s^+D_s^-$ threshold

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

Yields and Dalitz plot distribution

- $B^+ \rightarrow D_S^+ D_S^- K^+$: ~360 signal candidates with a purity of ~85%
- No clear structures over Dalitz plot except accumulations at the $m(D_s^+D_s^-)$ threshold around 3.9 GeV

Yields and Dalitz plot distribution

- $B^+ \rightarrow D_S^+ D_S^- K^+$: ~360 signal candidates with a purity of ~85%
- No clear structures over Dalitz plot except accumulations at the $m(D_s^+D_s^-)$ threshold around 3.9 GeV

Amplitude fit results

- Only resonances on $m(D_s^+D_s^-)$ contribute
- Dominant contribution from NR (~46.6%) and a near threshold state X(3960) (~24.2%, more than 12.6 σ)
- Evidence of contributions from $\psi(4260)$, $\psi(4660)$ and X(4140)
- Other states $(\chi_{c0}(4500), \chi_{c0}(4700), \psi(4040), \psi(4160), \psi(4415)$ and $\chi_{c2}(3930))$ also tested, though not significant

Puzzles around 3930 MeV

Summary of current PDG

 $D_s^+D_s^-$ threshold: 3936.68 MeV

	J ^{PC}	Mass(MeV)	Width(MeV)	Decays _{Bal}	Bar, Bell
X(3915)	$0^{++}/2^{++}$	3918.4 ± 1.9	20 ± 5	J/ψω, γγ, ! D\(\bar{D}\)	
$\chi_{c2}(3930)$	2++	3922.2 ± 1.0	35.3 ± 2.8	$\gamma\gamma,D\overline{D}$	

• X(3915) less likely to be $\chi_{c0}(2P)$ [1208.1134, 1410.6534] due to its small width and mass close to $\chi_{c2}(3930)$, while now $\chi_{c0}(2P)$ is assigned to a state around 3860 MeV (not seen in $B^+ \to D^+D^-K^+$).

		$m_{\chi_{c2}(3930)} \ [\text{MeV}/c^2]$	$\Gamma_{\chi_{c2}(3930)}$ [MeV]
Belle BaBar This analysis	[17] [18]	$3929 \pm 5 \pm 2$ $3926.7 \pm 2.7 \pm 1.1$ $3921.9 \pm 0.6 \pm 0.2$	$29 \pm 10 \pm 2$ $21.3 \pm 6.8 \pm 3.6$ $36.6 \pm 1.9 \pm 0.9$

- LHCb measurements from inclusive DD channels show difference on the mass and width, 2σ lower mass and 2σ larger width
- Current PDG values driven by LHCb inclusive measurements

LHCb-PAPER-2019-005

Inputs from $B \rightarrow DDh$

Summary of current PDG

 $D_s^+D_s^-$ threshold: 3936.68 MeV

	J ^{PC}	Mass(MeV)	Width(MeV)	Decays
X(3915)	$0^{++}/2^{++}$	3918.4 ± 1.9	20 ± 5	J/ψω, γγ, ! D D
$\chi_{c2}(3930)$	2++	3922.2 ± 1.0	35.3 ± 2.8	$\gamma\gamma$, $D\overline{D}$

• Recent LHCb measurements with $B^+ \to D^+ D^- K^+$ also gives interesting inspection on this area

Resonance	Mass (GeV/ c^2)	Width (MeV)
$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$

- Two resonances seen in DD decays, with J=0 and J=2; lead to rethink of previous results
- It also puts the question whether this spin 0 particle = X(3915)?
- Hard to be in 2P triplets, thus may prefer exotic nature;

LHCb-PAPER-2020-025

X(3960)

- J^{PC} of 0^{++} is significantly preferred
- Mass and width determined to be

	<i>M</i> ₀ (MeV)	$\Gamma_0({ m MeV})$
One channel	3956 ± 5 ± 11	43 ± 13 ± 8

 $m(D_s^+D_s^-)$ [GeV] • $D_s^+D_s^-$ threshold: ~3938 MeV

$$R(m \mid M_0, g_j) = \frac{1}{M_0^2 - m^2 - iM_0 \sum_j g_j \rho_j(m)},$$

Coupling constant

Phase space factor

- Default: only with one channel = RBW
- Two channels considered: $D_s^+D_s^-$ (D^+D^-) with couplings: 0. 33 \pm 1. 18 (0. 15 \pm 0. 33) GeV, simultaneous fits with $B^+ \to D^+D^-K^+$ decays needed

X(3960)

$$\frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = \frac{N_{\text{sig}}^{\text{corr}}}{N_{\text{con}}^{\text{corr}}} \left[\frac{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)}{\mathcal{B}(D_s^+ \to K^- K^+ \pi^+)} \right]^2 = 0.525 \pm 0.033,$$

Preliminary

$$\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}^{(1)} \mathcal{F}_X^{(1)}}{\mathcal{B}^{(2)} \mathcal{F}_X^{(2)}} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08,$$

- Phase space of $D_s^+D_s^-$ smaller than D^+D^-
- Suspiciously smaller branching fraction into D^+D^- final states: different resonances or a tetraquark with $c\bar{c}s\bar{s}$

X(4140)

- Dip around 4140 MeV can be seen clearly
- Significance around 3.9 σ ; mass and width determined to be

	<i>M</i> ₀ (MeV)	$\Gamma_0(\text{MeV})$
RBW	4133±6 ± 11	67±17 ± 7

- $J/\psi\phi$ threshold: ~4116.4 MeV
- A KMatrix with single resonance with two decay channels

$$\begin{pmatrix} \mathcal{M}_{D_s^+D_s^-\to D_s^+D_s^-} & \mathcal{M}_{D_s^+D_s^-\to J/\psi\phi} \\ \mathcal{M}_{J/\psi\phi\to D_s^+D_s^-} & \mathcal{M}_{J/\psi\phi\to J/\psi\phi} \end{pmatrix} \equiv \begin{pmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{pmatrix}, \quad \mathcal{K}_{ab}(m) = \sum_R \frac{g_b^R g_a^R}{M_R^2 - m^2} + f_{ab},$$

• Can't conclude whether the dip is due to resonances or due to opening of new decay channel

One slides for CP violation

- Amplitude analysis also important for understanding contributions of CP violation in multi-body decays
- Hadronic dynamic can be described by amplitude mode and thus isolate weak information

• E.g in $B^+ \to \pi^+ \pi^+ \pi^-$ decays, one finds several new pattern of CP violation: CP violation due to S-P wave interference, CP violation in tensor particles etc.

Conclusion

- Understanding fundamental structures of hadrons is one of key topics in particle physics
- A general amplitude analysis tool, TF-PWA, has been developed to search for exotic hadrons, to understand their properties and also to study CP violation over phase space
- Using TF-PWA, three new tetra-quark states have been observed by the LHCb experiment, one with double charges $(T_{cs}^a(2900)^{++})$ together with its neutral isospin partner, $T_{cs}^a(2900)^0$, and the third X(3960)
- Stay tuned for more exotic states from LHCb

Ruiting Ma, Ph. D student from UCAS, will present these results in ICHEP tomorrow

Thank You for Your Attention

2022/07/08 45