

Institute of High Energy Physics **Chinese Academy of Sciences**

粲介子强子衰变振幅分析和分支比测量

报告人: 李振轩

广西大学 中国科学院高能物理研究所

2022.8.22

√ 简介

√ 振幅分析

✓ 分支比测量

▶ 检验非微扰QCD理论

- 测量二体衰变PP, VP, VV, SP, AP的分支比
- •为研究 $D^0\overline{D}^0$ 混合,*CP*破坏,SU(3)对称性破缺提供重要信息

▶ 深入理解强子谱

- 为探讨轻标量介子结构, $a_1(1260), K_1(1270)$ 及非共振态S 波的性质提供实 验依据
- > 提供精确的模拟模型
 - 有效提高其它粲介子分析,如强相位、形状因子、衰变常数等的测量精度

数据样本及双标记法

Datasets:

 $-D^{+(0)}: 2.93 \text{ fb}^{-1}$ $-D_s^+: 6.32 \text{ fb}^{-1}$

Single Tag (ST): 重建单个 D_(s) 介子
—相对较高的本底
—更高的效率

Double Tag (DT):同时重建两侧的 D_(s) 介子 —非常低的本底水平,以用于不同衰变的研究 —来自标记测的系统误差几乎可以消除

绝对分支比计算: $\mathcal{B}_{sig} = \frac{1}{\Sigma_{\alpha} N_{\alpha}^{S'}}$

 $-D^{+(0)}$: 2.93 fb⁻¹ @ E_{cm} = 3.773GeV.

 $-D_s^+$: 6.32 fb⁻¹ @ $E_{cm} = 4.178 - 4.226$ GeV.

$$\frac{N_{sig}^{\rm DT}}{S_{\alpha,sig}^{\rm T}\epsilon_{\alpha,sig}^{\rm DT}/\epsilon_{\alpha}^{\rm ST}}$$

√ 简介

√ 振幅分析

√ 分支比测量

- ▶ 首次振幅分析
- ➤ 观测到了同位旋为1的态a₀(1710)

S(1710): *f*₀(1710) 与 *a*₀(1710)的混合:

- 相消干涉 D⁺_s → K⁺K⁻π⁺
 PRD 104, 012016 (2021)
- 相加干涉 $D_s^+ \to K_S^0 K_S^0 \pi^+$

 $\mathcal{D}(\mathbf{D}^+) = \mathcal{V}^0 \mathcal{V}^0 \pi^+$

	Phase	FF (%)
)+	0.0 (fixed)	$43.5\pm3.9\pm0.5$
	$2.3\pm0.1\pm0.1$	$46.3\pm4.0\pm1.2$

 \rightarrow Consistent with the $K^* \overline{K}^*$ molecule hypothesis of $f_0(1710)$

 $\mathcal{B}(D_s^+ \to K_s^0 K_s^0 \pi^+) = (0.68 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}})\%$

Amplitude analysis of $D_s^+ \to K_s^0 K^+ \pi^0$

▶ 首次振幅分析

 \rightarrow 首次通过 $K_{S}^{0}K^{+}$ 衰变过程观测到 $a_{0}(1817)^{+}$

ıd)	FF (%)	BF (10^{-3})	σ
l)	$32.7 \pm 2.2 \pm 1.9$	$4.77 \pm 0.38 \pm 0.32$	> 10
± 0.11	$13.9 \pm 1.7 \pm 1.3$	$2.03 \pm 0.26 \pm 0.20$	> 10
± 0.25	$7.7\pm1.7\pm1.8$	$1.12 \pm 0.25 \pm 0.27$	6.7
± 0.08	$6.0\pm1.4\pm1.3$	$0.88 \pm 0.21 \pm 0.19$	7.6
± 0.07	$23.6\pm3.4\pm2.0$	$3.44 \pm 0.52 \pm 0.32$	> 10

Amplitude analysis of $D_s^+ \rightarrow K^+ K^- \pi^+$

▶ 在 K⁺K⁻ 质量谱的低端进行模型无关的振幅分析, 以此来确定*K*⁺*K*⁻ S波的线形

Phase (ϕ)	FFs (%)	Significance (σ)
0.0 (fixed)	$48.3\pm0.9\pm0.6$	>20
$6.22 \pm 0.07 \pm 0.04$	$40.5 \pm 0.7 \pm 0.9$	>20
$4.77 \pm 0.07 \pm 0.07$	$19.3 \pm 1.7 \pm 2.0$	>20
$2.91 \pm 0.20 \pm 0.23$	$3.0\pm0.6\pm0.5$	8.6
$1.02 \pm 0.12 \pm 0.06$	$1.9\pm0.4\pm0.6$	9.2
$0.59 \pm 0.17 \pm 0.46$	$1.2\pm0.4\pm0.2$	6.4

Amplitude analysis of $D_S^+ \rightarrow \pi^+ \pi^0 \eta'$

▶ 首次振幅分析

> 实验测量与理论预言间有较大偏差

Decay		$\mathcal{B}(\%)$		
Theory $D_s^+ \to \rho^+ \eta'$		3.0 ± 0.5 [1]	1.7 [2]	1.6 [2]
	$D_s^+ \to \pi^+ \pi^0 \eta'$	$5.6\pm0.5\pm0.6$	CLEO	
Experiment	$D_s^+ \to \rho^+ \eta'$	$5.8\pm1.4\pm0.4$		
	$D_s^+ \to \pi^+ \pi^0 \eta'$	< 5.1	BESIII	
	(nonresonant)	(90% confidence level)		

最高精度分支比测量:

 $\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \eta') = (6.15 \pm 0.25_{\text{stat.}} \pm 0.18_{\text{syst.}})\%$

 $\mathcal{B}(D_s^+ \to (\pi^+ \pi^0)_s \eta') < 0.10\% @90\%$ CL $\mathcal{B}(D_{s}^{+} \rightarrow (\pi^{+}\pi^{0})_{P}\eta') < 0.74\% @90\%$ CL

9

Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^0 \pi^0$

▶ 首次振幅分析

 $D_s^+ \to f_2(1270)\pi^+, f_2(1270) \to \pi^+\pi^-$

→ 首次通过 $f_0(980) \rightarrow \pi^0 \pi^0$ 测量了 $D_s^+ \rightarrow f_0(980) \pi^+$ 分支比

 1.2 ± 0.2

 $\mathcal{B}(D_{\rm S}^+ \to f_0(980)\pi^+, f_0(980) \to \pi^0\pi^0)$ $= (2.8 \pm 0.4 \pm 0.4) \times 10^{-3}$

没有f₀(500)的信号

$$\frac{2}{2}(\pi^{+}\pi^{-})$$

 $\frac{1}{2}(\pi^{0}\pi^{0})$

- $R(f_0(980)) = 2.2 \pm 0.5$
- $R(f_0(1370)) = 2.7 \pm 1.4$
- $R(f_2(1270)) = 2.4 \pm 1.8$

 $\mathcal{B}(D_s^+ \to \pi^+ \pi^0 \pi^0) = (0.50 \pm 0.04_{\text{stat.}} \pm 0.02_{\text{syst.}})\%$ 相较于PDG精度改进约2倍

Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^- \pi^+$

action (%)	Magnitude	Phase (radians)
$\pm 0.8 \pm 1.2$	1. (Fixed)	0. (Fixed)
$\pm 0.4 \pm 0.5$	$0.13 \pm 0.03 \pm 0.04$	$5.44 \pm 0.25 \pm 0.62$
$\pm 0.4 \pm 0.5$	$0.91 \pm 0.16 \pm 0.22$	$1.03\pm0.32\pm0.51$
$\pm 0.8 \pm 1.3$	Table III	Table III
\pm 2.4 \pm 3.5		

Amplitude analysis of $D_S^+ \rightarrow K_S^0 \pi^+ \pi^0$

$> B(D_s^+ → VP)$ 帮助研究SU(3)对称性破缺效应

Amplitude	Magnitude (ρ_n)	Phase (ϕ_n)	FF (%)	Significance (σ)
$D_s^+ \to K_S^0 \rho^+$	1.0(fixed)	0.0(fixed)	$50.2\pm7.2\pm3.9$	> 10
$D_{s}^{+} \to K_{S}^{0} \rho(1450)^{+}$	2.7 ± 0.5	$2.2\pm0.2\pm0.1$	$20.4\pm4.3\pm4.4$	> 10
$D_s^+ \to K^*(892)^0 \pi^+$	0.4 ± 0.1	$3.2\pm0.2\pm0.1$	$8.4\pm2.2\pm0.9$	5.0
$D_s^+ \to K^*(892)^+ \pi^0$	0.3 ± 0.1	$0.2\pm0.2\pm0.2$	$4.6\pm1.4\pm0.4$	4.0
$D_s^+ \to K^* (1410)^0 \pi^+$	0.8 ± 0.2	$0.2\pm0.3\pm0.1$	$3.3\pm1.6\pm0.5$	3.7

 $\mathcal{B}(D_s^+ \to K_s^0 \pi^+ \pi^0) = (5.43 \pm 0.30_{\text{stat.}} \pm 0.15_{\text{syst.}}) \times 10^{-3}$ 精度改进约3倍

$$A_{CP} = (2.7 \pm 5.5_{\text{stat.}} \pm 0.9_{\text{syst.}})$$

	Intermediate process	BF (10^{-3})
)%	$D_s^+ \to K_S^0 \rho^+$	$2.73 \pm 0.42 \pm 0.22$
	$D_s^+ \to K_S^0 \rho(1450)^+$	$1.11 \pm 0.24 \pm 0.24$
	$D_s^+ \to K^*(892)^0 \pi^+$	$0.45 \pm 0.12 \pm 0.05$
	$D_s^+ \to K^*(892)^+ \pi^0$	$0.25 \pm 0.08 \pm 0.02$
	$D_s^+ \to K^* (1410)^0 \pi^+$	$0.18 \pm 0.09 \pm 0.03$
		data
		fit result
		background
	_	$K_{s}^{0}\rho(770)^{+}$
[└] ┙ [┺] ╋╪╋ _╈ ╋		$K_{s}^{0}\rho(1450)^{+}$
		$K^{*}(892)^{0}\pi^{+}$
		$K^{*}(892)^{+}\pi^{0}$
		$K^{*}(1410)^{0}\pi^{+}$
1	1.5	
$_{\tau^+\pi^0}(\text{GeV}/c^2)$		12

Amplitude analysis of $D_s^+ \to K^+ \pi^+ \pi^-$

▶ 首次测量B(D⁺_s → K⁺f₀(500), K⁺f₀(980), K⁺f₀(1370))

Intermediate process	$BF(10^{-3})$	PDG(1
$D_s^+ \to K^+ \rho^0$	$1.99\pm0.20\pm0.22$	$2.5~\pm$
$D_s^+ \to K^+ \rho (1450)^0$	$0.78 \pm 0.20 \pm 0.17$	$0.69~\pm$
$D_s^+ \to K^*(892)^0 \pi^+$	$1.85 \pm 0.13 \pm 0.11$	1.41 \pm
$D_s^+ \to K^* (1410)^0 \pi^+$	$0.29 \pm 0.13 \pm 0.13$	1.23 \pm
$D_s^+ \to K_0^* (1430)^0 \pi^+$	$1.15\pm0.16\pm0.15$	0.50 \pm
$D_s^+ \to K^+ f_0(500)$	$0.43 \pm 0.14 \pm 0.24$	-
$D_s^+ \to K^+ f_0(980)$	$0.27 \pm 0.08 \pm 0.07$	-
$D_s^+ \to K^+ f_0(1370)$	$1.22 \pm 0.19 \pm 0.18$	-
$D_s^+ \to (K^+ \pi^+ \pi^-)_{NR}$	_	1.03 \pm

1356 events, about 95% purity

 $\mathcal{B}(D_s^+ \to K^+ \pi^+ \pi^-) = (6.11 \pm 0.18_{\text{stat.}} \pm 0.11_{\text{syst.}}) \times 10^{-3}$

SCS <u>JHEP 08 (2022) 196</u>

$$A_{CP} = \frac{\mathcal{B}(D_{s}^{+}) - \mathcal{B}(D_{s}^{-})}{\mathcal{B}(D_{s}^{+}) + \mathcal{B}(D_{s}^{-})} = (3.3 \pm 3.7_{\text{stat.}} \pm 1.3_{\text{syst.}})\%$$

无明显CP破缺

Amplitude analysis of $D_s^+ \to K^- K^+ \pi^+ \pi^0$

Phys. Rev. D 104, 032011 (2021)

Phase (ϕ_n)	FF (%)
0.0 (fixed)	$38.68 \pm 1.42 \pm 2.17$
$-1.46 \pm 0.05 \pm 0.02$	$9.64 \pm 0.84 \pm 0.30$
$1.46 \pm 0.07 \pm 0.04$	$3.36 \pm 0.75 \pm 0.27$
	$50.81 \pm 1.01 \pm 2.20$
$-2.15 \pm 0.06 \pm 0.05$	$16.32 \pm 0.95 \pm 0.33$
$-0.52 \pm 0.07 \pm 0.04$	$6.87 \pm 0.55 \pm 0.26$
$-1.57 \pm 0.08 \pm 0.03$	$3.34 \pm 0.55 \pm 0.18$
	$23.15 \pm 0.89 \pm 0.74$
$1.87 \pm 0.08 \pm 0.17$	$10.44 \pm 0.81 \pm 0.73$
	$1.40 \pm 0.26 \pm 0.17$
	$2.60 \pm 0.48 \pm 0.31$
$-0.25 \pm 0.11 \pm 0.12$	$3.88 \pm 0.71 \pm 0.45$
	$0.45 \pm 0.11 \pm 0.10$
	$0.86 \pm 0.20 \pm 0.17$
$1.52 \pm 0.11 \pm 0.15$	$1.34 \pm 0.31 \pm 0.27$
•••	$5.43 \pm 0.69 \pm 0.76$
	$2.90 \pm 0.39 \pm 0.44$
	$5.37 \pm 0.73 \pm 0.82$
$-0.92 \pm 0.07 \pm 0.05$	$8.03 \pm 1.09 \pm 1.22$
$2.15 \pm 0.08 \pm 0.08$	$3.46 \pm 0.58 \pm 0.61$
	$1.56 \pm 0.28 \pm 0.17$
	$1.56 \pm 0.28 \pm 0.17$
$2.13 \pm 0.08 \pm 0.05$	$2.39 \pm 0.43 \pm 0.25$
$2.95 \pm 0.13 \pm 0.06$	$0.77 \pm 0.27 \pm 0.09$
$0.61 \pm 0.10 \pm 0.06$	$1.37 \pm 0.32 \pm 0.34$
	Phase (ϕ_n) 0.0 (fixed) -1.46 ± 0.05 ± 0.02 1.46 ± 0.07 ± 0.04 -2.15 ± 0.06 ± 0.05 -0.52 ± 0.07 ± 0.04 -1.57 ± 0.08 ± 0.03 1.87 ± 0.08 ± 0.17 -0.25 ± 0.11 ± 0.12 -1.52 ± 0.11 ± 0.12 1.52 ± 0.11 ± 0.15 1.52 ± 0.11 ± 0.15 1.52 ± 0.11 ± 0.15 1.52 ± 0.11 ± 0.15 1.52 ± 0.11 ± 0.15 1.52 ± 0.11 ± 0.15 1.152 ± 0.07 ± 0.05 2.15 ± 0.08 ± 0.05 2.95 ± 0.13 ± 0.06 0.61 ± 0.10 ± 0.06

Mass (K π^+) (GeV/c²) $\mathcal{B}(D_S^+ \to K^- K^+ \pi^+ \pi^0) = (5.42 \pm 0.10_{\text{stat.}} \pm 0.17_{\text{syst.}})\%$ $\mathcal{B}(D_s^+ \to \phi \rho^+) = (5.59 \pm 0.15_{\text{stat.}} \pm 0.30_{\text{syst.}})\%$ Consistent (5.70%) $\mathcal{B}(D_s^+ \to \overline{K^*}^0 {K^*}^+) = (5.64 \pm 0.23_{\text{stat.}} \pm 0.27_{\text{syst.}})\%$ Much larger (1.50%)

Amplitude analysis of $D_s^+ \rightarrow \pi^+ \pi^- \eta$

▶ 首次振幅分析

▶ 观测到了纯湮灭过程 $D_s^+ \rightarrow a_0(980)^+ \rho(770)^0$

1306 events, about 87% purity

$$B(D_s^+ \to \pi^+ \pi^+ \pi^- \eta)$$

$$\begin{split} \mathcal{B}(D_s^+ \to a_0(980)^+ \rho(770)^0, a_0(980)^+ \to \pi^+ \eta) \\ &= (0.21 \pm 0.08_{\text{stat.}} \pm 0.05_{\text{syst.}})\% \\ & \text{比其它多数纯湮灭衰变高了一个量级} \end{split}$$

	Phase	FF (%)
$(0)^{0}\pi^{+})\eta$	0.0 (fixed)	$55.4\pm3.9\pm2.0$
$(00)\pi^{+})\eta$	$5.0\pm0.1\pm0.1$	$8.1\pm1.9\pm2.1$
0	$2.5\pm0.1\pm0.1$	$6.7\pm2.5\pm1.5$
$(\pi^{+})\pi^{+}$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$(+\pi^{-})\pi^{+}$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$()^{-}\pi^{+})\pi^{+}$	$4.3\pm0.2\pm0.4$	$1.9\pm0.5\pm0.3$
$()^{+}\pi^{-})\pi^{+}$	$4.3\pm0.2\pm0.4$	$1.7\pm0.5\pm0.3$
F F	$0.1\pm0.2\pm0.2$	$5.1\pm1.2\pm0.9$
F	$0.1\pm0.2\pm0.2$	$3.4\pm0.8\pm0.6$
	$1.4\pm0.2\pm0.3$	$6.2\pm1.7\pm0.9$
	$2.5\pm0.2\pm0.3$	$12.7\pm2.6\pm2.0$

 $= (3.12 \pm 0.13_{\text{stat.}} \pm 0.09_{\text{syst.}})\%$

Amplitude analysis of $D_S^+ \to K_S^0 K^- \pi^+ \pi^+$

▶ 首次振幅分析

> 与世界平均值一致,但精度更高

nt process, $\mathcal{B}(D_s^+ \to K^*(892))$	$^{+}\overline{K}^{*}(892)^{0})$
$= (5.34 \pm 0.39_{\text{stat.}} \pm 0.64_{\text{syst.}})$	$(E_{1})\%$
$(892)^+ \bar{K}^* (892)^0$	$34.3 \pm 3.1 \pm 5.2$
$(892)^{+}\bar{K}^{*}(892)^{0}$	$1.1\pm0.1\pm8.3$
$(\bar{K}^*(892)^+\bar{K}^*(892)^0$	$4.5 \pm 0.8 \pm 0.3$
$(92)^+ K^* (892)^0$	$40.6 \pm 2.9 \pm 4.9$ $5.0 \pm 1.2 \pm 1.0$
$(K^0 \pi^+)_{S-wave}$ 92) ⁰ $(K^0_S \pi^+)_{S-wave}$	$5.0 \pm 1.2 \pm 1.0$ $7.3 \pm 1.1 \pm 0.9$
$(75)\pi^+, \eta(1475) \to a_0(980)^-\pi^+$	$10.8\pm2.6\pm5.2$
$(75)\pi^+, \eta(1475) \to \bar{K}^*(892)^0 K_S^0$	$2.2\pm0.6\pm0.2$
$75)\pi^+, \eta(1475) \to K^*(892)^+K^-$	$2.2\pm0.6\pm0.2$
$(75)\pi^+, \eta(1475) \to K^*(892)K$	$4.9\pm1.4\pm1.0$
$(75)\pi^+, \eta(1475) \to (K_S^0\pi^+)_{S-\text{wave}}K^-$	$23.6 \pm 3.6 \pm 7.5$
$(285)\pi^+, f_1(1285) \to a_0(980)^-\pi^+$	$2.2\pm0.5\pm0.2$
$(892)^+K^-)_P\pi^+$	$10.8\pm1.9\pm1.7$

 $\mathcal{B}(D_s^+ \to K_s^0 K^- \pi^+ \pi^+) = (1.46 \pm 0.05_{\text{stat.}} \pm 0.05_{\text{syst.}})\%$

Amplitude analysis of $D_S^+ \to K^+ \pi^+ \pi^- \pi^0$

▶ 首次振幅分析

 $\triangleright B(D_s^+ \to K^+ \omega)$ 与BESIII此前测量一致

Phys. Rev. D 99, 091101 (2019)

	Phase (rad)	FF (%)	$S(\sigma)$
	0.0 (fixed)	$14.5 \pm 2.2 \pm 0.6$	>10
	$2.09 \pm 0.12 \pm 0.03$	$26.0 \pm 2.5 \pm 1.1$	> 10
	-	$40.5 \pm 2.8 \pm 1.5$	>10
	$2.42 \pm 0.21 \pm 0.04$	$4.3 \pm 1.1 \pm 0.6$	6.8
	$0.57 \pm 0.23 \pm 0.10$	$9.7\pm1.5\pm0.6$	>10
$[S]\pi^+$	$1.80 \pm 0.24 \pm 0.08$	$4.0\pm1.2\pm0.6$	5.5
$)[S]\pi^{+}$	$-1.61 \pm 0.17 \pm 0.05$	$5.6 \pm 0.9 \pm 0.2$	-
$[S]\pi^+$	$-1.61 \pm 0.17 \pm 0.05$	$6.1 \pm 0.9 \pm 0.2$	-
$]\pi^+$	-	$11.3\pm1.8\pm0.4$	8.9
)[S]	$-1.19 \pm 0.25 \pm 0.22$	$1.9\pm0.7\pm0.9$	-
$^{+})[S]$	$-1.19 \pm 0.25 \pm 0.22$	$1.9\pm0.7\pm0.9$	-
S]	-	$3.3\pm1.2\pm1.5$	3.8
	$1.02 \pm 0.16 \pm 0.08$	$10.4 \pm 2.0 \pm 0.6$	6.6
$(\tau^{-})_{S-wave}$	$-2.87 \pm 0.17 \pm 0.06$	$9.5\pm2.2\pm0.9$	6.0

 $\mathcal{B}(D_s^+ \to K^+ \pi^+ \pi^- \pi^0) = (9.75 \pm 0.54_{\text{stat.}} \pm 0.17_{\text{syst.}}) \times 10^{-3}$

Amplitude analysis of $D_s^+ \to K^- K^+ \pi^+ \pi^+ \pi^-$

Amplitude

▶ 首次振幅分析

▶ 帮助研究 $D_s^+ \rightarrow AV$ 衰变过程

JHEP 07 (2022) 051

Dominated by $D_s^+ \rightarrow a_1(1260)^+ \phi$

	Phase	FF (%)	Significance (σ)
	0 (fixed)	$73.1{\pm}3.1\pm1.5$	> 10
	$1.47{\pm}0.19\pm0.03$	$5.0{\pm}1.7\pm0.7$	5.5
		$78.1{\pm}2.9\pm1.6$	
R	$1.99{\pm}0.12\pm0.17$	$21.8{\pm}2.9\pm0.8$	> 10

 $\mathcal{B}(D_s^+ \to K^- K^+ \pi^+ \pi^+ \pi^-) = (6.60 \pm 0.47_{\text{stat.}} \pm 0.38_{\text{syst.}}) \times 10^{-3}$

Amplitude analysis of $D^+ \rightarrow K^+ K_S^0 \pi^0$

▶ 首次振幅分析

 $\gg \mathcal{B}(D^+ \to K^*(892)^+ K_S^0)$ 与

692 events, about 97.4% purity

$ \pi \mbox{同理论预言间的偏差约4} \sigma \begin{tabular}{ c c c c c c c } \hline \hline Model & B(D^+ \to K^*(892)^+ K_S^0)(\times 10^{-3}) \\ \hline Pole & 6.2 \pm 1.2 \\ FAT [mix] & 5.5 \\ TDA [tree] & 5.02 \pm 1.31 \\ TDA [QCD-penguin] & 4.90 \pm 0.21 \\ PDG & 17 \pm 8 \end{tabular} \\ \hline \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \hline \end{tabular} \\ \hline tab$					
不同理论预言间的偏差约47Pole FAT [mix] TDA [tree] TDA [QCD-penguin] PDG 6.2 ± 1.2 5.5 5.02 ± 1.31 4.90 ± 0.21 PDGAmplitudeMagnitudePhase ϕ (°)FF (%)Significance 17 ± 8 AmplitudeMagnitudePhase ϕ (°)FF (%)Significance 17 ± 8 AmplitudeMagnitudePhase ϕ (°)FF (%)Significance 17 ± 8 AmplitudeMagnitudePhase ϕ (°)FF (%)Significance 17 ± 8 D' $\rightarrow K^*(892)^*K_3^0$ 1.0 (fixed)0.0 (fixed) 57.1 ± 2.6 29.6σ D' $\rightarrow K^*(892)^0K^+$ 0.41 ± 0.04 162 ± 10 10.2 ± 1.5 11.6σ D' $\rightarrow (K^*\pi^0)_{S-wave}K_3^0$ 2.02 ± 0.37 140 ± 14 3.9 ± 1.5 5.2σ D' $\rightarrow (K_5^*\pi^0)_{S-wave}K^+$ 3.14 ± 0.46 -173.7 ± 9.7 9.7 ± 2.6 7.4σ This workPDG $\mathcal{B}(D^+ \rightarrow K^*(892)^+K_5^0)$ $(8.69 \pm 0.40_{stat} \pm 0.64_{syst} \pm 0.51_{Br}) \times 10^{-3}$ $(17 \pm 8) \times 10^{-3}$ $\mathcal{B}(D^+ \rightarrow \bar{K}^*(892)^0K^+)$ $(3.10 \pm 0.46_{stat} \pm 0.68_{syst} \pm 0.18_{Br}) \times 10^{-3}$ $(3.74^{+0.12}_{-0.20}) \times 10^{-3}$			Model	$\mathcal{B}(D^+$ –	$\rightarrow K^{*}(892)^{+}K^{0}_{S})(\times 10^{-3})$
不同理论预言间的偏差约4			Pole		6.2 ± 1.2
不同理论预言间的偏差约4σ TDA [tree] TDA [QCD-penguin] PDG 17±8 116σ 17±8 10 10.2±1.5 11.6σ 10.2±1.5 11.6σ 10.2±1.5 11.6σ 10.2±1.5 11.6σ 10.2±1.5 11.6σ 10.2±1.5 11.6σ 10.4±14 3.9±1.5 5.2σ 1+→ (K_3^0 \pi^0)_{S-wave}K^6 2.02±0.37 140±14 3.9±1.5 5.2σ 1+→ (K_3^0 \pi^0)_{S-wave}K^4 3.14±0.46 -173.7±9.7 9.7±2.6 7.4σ This work PDG B(D ⁺ → K^*(892) ⁺ K_S^0) (8.69±0.40_{stat}±0.64_{syst}±0.51_{Br})×10^{-3} (17±8)×10^{-3} (17±8)×10^{-3} (3.74^{+0.12}_{-0.20})×10^{-3} B(D^+ → \bar{K}^*(892)^0K^+) (3.10±0.46_{stat}±0.68_{syst}±0.18_{Br})×10^{-3} (3.74^{+0.12}_{-0.20})×10^{-3} (3.74^{+0.12}			FAT [mix]		5.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	不同理论预言间的	內偏差约4 σ	TDA [tree]		5.02 ± 1.31
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			TDA [QCD-penguin]		4.90 ± 0.21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			PDG		17 ± 8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Amplitude	Magnitude	Phase ϕ (°)	FF (%)	Significance
$\begin{array}{cccccccc} D^+ \to \bar{K}^*(892)^0 K^{\bar{+}} & 0.41 \pm 0.04 & 162 \pm 10 & 10.2 \pm 1.5 & 11.6\sigma \\ D^+ \to (K^+\pi^0)_{S\text{-wave}} K^0_S & 2.02 \pm 0.37 & 140 \pm 14 & 3.9 \pm 1.5 & 5.2\sigma \\ D^+ \to (K^0_S \pi^0)_{S\text{-wave}} K^+ & 3.14 \pm 0.46 & -173.7 \pm 9.7 & 9.7 \pm 2.6 & 7.4\sigma \end{array}$ $\begin{array}{ccccc} This work & PDG \\ \hline \mathcal{B}(D^+ \to K^*(892)^+ K^0_S) & (8.69 \pm 0.40_{\text{stat}} \pm 0.64_{\text{syst}} \pm 0.51_{\text{Br}}) \times 10^{-3} & (17 \pm 8) \times 10^{-3} \\ \hline \mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+) & (3.10 \pm 0.46_{\text{stat}} \pm 0.68_{\text{syst}} \pm 0.18_{\text{Br}}) \times 10^{-3} & (3.74^{+0.12}_{-0.20}) \times 10^{-3} \end{array}$	$D^+ \rightarrow K^*(892)^+ K^0_S$	1.0 (fixed)	0.0 (fixed)	57.1 ± 2.6	29.6σ
$\begin{array}{cccccccc} D^+ \to (K^+ \pi^0)_{S\text{-wave}} K^0_S & 2.02 \pm 0.37 & 140 \pm 14 & 3.9 \pm 1.5 & 5.2\sigma \\ D^+ \to (K^0_S \pi^0)_{S\text{-wave}} K^+ & 3.14 \pm 0.46 & -173.7 \pm 9.7 & 9.7 \pm 2.6 & 7.4\sigma \\ \hline & & & & & & & & & & \\ \hline & & & & & &$	$D^+ \to \bar{K}^* (892)^0 K^+$	0.41 ± 0.04	162 ± 10	10.2 ± 1.5	11.6σ
$\begin{array}{cccc} \underline{D^+ \to (K_S^0 \pi^0)_{\mathcal{S}\text{-wave}} K^+} & 3.14 \pm 0.46 & -173.7 \pm 9.7 & 9.7 \pm 2.6 & 7.4\sigma \\ & \text{This work} & \text{PDG} \\ \\ \mathcal{B}(D^+ \to K^*(892)^+ K_S^0) & (8.69 \pm 0.40_{\text{stat}} \pm 0.64_{\text{syst}} \pm 0.51_{\text{Br}}) \times 10^{-3} & (17 \pm 8) \times 10^{-3} \\ \\ \mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+) & (3.10 \pm 0.46_{\text{stat}} \pm 0.68_{\text{syst}} \pm 0.18_{\text{Br}}) \times 10^{-3} & (3.74^{+0.12}_{-0.20}) \times 10^{-3} \end{array}$	$D^+ \rightarrow (K^+ \pi^0)_{\mathcal{S}\text{-wave}} K^0_{\mathcal{S}}$	2.02 ± 0.37	140 ± 14	3.9 ± 1.5	5.2σ
This work PDG $\mathcal{B}(D^+ \to K^*(892)^+ K_S^0)$ $(8.69 \pm 0.40_{\text{stat}} \pm 0.64_{\text{syst}} \pm 0.51_{\text{Br}}) \times 10^{-3}$ $(17 \pm 8) \times 10^{-3}$ $\mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+)$ $(3.10 \pm 0.46_{\text{stat}} \pm 0.68_{\text{syst}} \pm 0.18_{\text{Br}}) \times 10^{-3}$ $(3.74^{+0.12}_{-0.20}) \times 10^{-3}$	$D^+ \to (K^0_S \pi^0)_{S-\text{wave}} K^+$	3.14 ± 0.46	-173.7 ± 9.7	9.7 ± 2.6	7.4σ
$ \mathcal{B}(D^+ \to K^*(892)^+ K_S^0) \qquad (8.69 \pm 0.40_{\text{stat}} \pm 0.64_{\text{syst}} \pm 0.51_{\text{Br}}) \times 10^{-3} \qquad (17 \pm 8) \times 10^{-3} \\ \mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+) \qquad (3.10 \pm 0.46_{\text{stat}} \pm 0.68_{\text{syst}} \pm 0.18_{\text{Br}}) \times 10^{-3} \qquad (3.74^{+0.12}_{-0.20}) \times 10^{-3} $			This work		PDG
$\mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+) \qquad (3.10 \pm 0.46_{\text{stat}} \pm 0.68_{\text{syst}} \pm 0.18_{\text{Br}}) \times 10^{-3} \qquad (3.74^{+0.12}_{-0.20}) \times 10^{-3}$	$\mathcal{B}(D^+ \to K^*(892)^+ K^0_S)$	(8.69 ± 0.40)	$_{\mathrm{stat}}\pm0.64_{\mathrm{syst}}\pm0.51$	$_{\rm Br}) \times 10^{-3}$	$(17\pm8) imes10^{-3}$
	$\mathcal{B}(D^+ \to \bar{K}^*(892)^0 K^+)$	(3.10 ± 0.46)	$_{\mathrm{stat}}\pm0.68_{\mathrm{syst}}\pm0.18$	$(3.74^{+0.12}_{-0.20}) \times 10^{-3}$	

与此前测量及理论预测一致

Phys. Rev. D 104, 012006 (2021)

√ 简介

√ 振幅分析

√ 分支比测量

 $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

使用强子标记道: (移除 $D^+ \to K^+ \omega, D^+ \to K^+ \eta, D^+ \to K^+ \phi$) $A_{CP} = -0.04 \pm 0.06_{stat.} \pm 0.01_{svst.}$ Phys. Rev. L 125, 141802 (2020)

使用半轻标记道: Phys. Rev. D 104, 072005 (2021)

	$B(imes 10^{-4})$	Ratio of DCS decay over Cabbibo-favored decay	Phys. Rev. D 105, 112001 (2022) arXiv:2110.10999
$D^0 \to K^+ \pi^- \pi^0$	$3.13^{+0.60}_{-0.56 stat.} \pm 0.15_{syst.}$	$(0.22 \pm 0.04)\%$	$(0.75 \pm 0.14) \tan^4 \theta_C$
$D^0 \to K^+ \pi^- \pi^0 \pi^0$	< 3.6 90% CL	< 0.40 %	$1.37 \times \tan^4 \theta_C$
$D^+ \to K^+ \pi^0 \pi^0$	$2.1 \pm 0.4_{stat.} \pm 0.1_{syst.}$	$(2.26 \pm 0.40) \times 10^{-3}$	$(0.78 \pm 0.14) \tan^4 \theta_C$
$D^+ \to K^+ \pi^0 \eta$	$2.1 \pm 0.6_{stat.} \pm 0.1_{syst.}$	$(8.09 \pm 2.13) \times 10^{-3}$	$(2.79 \pm 0.64) \tan^4 \theta_C$

 $\mathcal{B}(D^+ \to K^+ \pi^+ \pi^- \pi^0) = (1.13 \pm 0.08_{stat.} \pm 0.03_{svst.}) \times 10^{-3}$ $\mathcal{B}(D^+ \to K^+ \omega) = (5.7^{+2.5}_{-2.1 \ stat.} \pm 0.2_{svst.}) \times 10^{-5}$

 $\frac{\mathcal{B}(D^+ \to K^+ \pi^+ \pi^- \pi^0)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+ \pi^0)} = (1.81 \pm 0.15)\%, \qquad (6.28 \pm 0.52) \tan^4 \theta_C$

 $\mathcal{B}(D^+ \to K^+ \pi^+ \pi^- \pi^0) = (1.03 \pm 0.12_{stat.} \pm 0.06_{svst.}) \times 10^{-3}$

分支比测量

•	$D^{+(0)}$ 含多个 π 介子衰变	arXiv:2
•	$D^{+(0)}$ 含K介子和 π 介子衰变	Phys.
•	$D^{+(0)} \to K \overline{K} \pi \pi$	Phys.
•	$D^{+(0)}$ 含 η 介子衰变	Phys.
•	$D^{+(0)} \to K \pi \omega$	Phys.
•	$D^{+(0)} \rightarrow \omega \pi \pi$	Phys.
•	$D^0 \to K_L X$, $X = \phi/\eta/\omega/\eta'$	<u>Phys.</u>
•	$D^0 \rightarrow \omega \phi$,极化测量	<u>Phys.</u>
•	$D_s^+ \rightarrow P P$, 二体衰变	<u>JHEP</u>

2206.13864

- Rev. D 106, 032002 (2022)
- Rev. D 102, 052006 (2020)
- Rev. Lett. 124, 241803 (2020)
- Rev. D 105, 032009 (2020)
- Rev. D 102, 052003 (2020)
- Rev. D 105, 092010 (2022)
- Rev. Lett. 128, 011803 (2022)
- <u>08 (2020) 146</u>

√ 简介

√ 振幅分析

✓ 分支比测量

√总结

总结

√ 振幅分析

- 观测到新的同位旋为1的粒子— $a_0(1817)$
- 检验不同理论模型
- 测量 $D \rightarrow VP, AP, VV$... 过程分支比,帮助研究SU(3)对称性破缺等效应

√ 分支比测量

- 首次测量双卡压低过程 $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$
- 显著提高多个衰变道测量精度

√ 未来目标

利用 20 fb⁻¹ ψ(3770) 数据进一步研究D介子内部信息

Thanks for your attention!

Back up

$D^{+(0)}$ decays involving multiple pions

Decay	$\Delta E_{ m sig}$	$N_{ m DT}$	$\epsilon_{ m sig}$	$\mathcal{B}_{\mathrm{sig}}$	
	(MeV)		(%)	$(\times 10^{-4})$	
$\pi^+\pi^-\pi^0$	(-62, 36)	12792.6(120.1)	40.91	134.3(13)(16)	
$\pi^+\pi^-2\pi^0$	(-75, 37)	3783.7(70.5)	16.29	99.8(19)(24)	
$\pi^+\pi^-2\eta$	(-37, 29)	42.5(6.7)	2.14	8.5(13)(04)	
$4\pi^0$	(-105, 41)	96.0(11.5)	5.41	7.6(09)(07)	=
$3\pi^0\eta$	(-82, 40)	155.3(14.7)	2.83	23.6(22)(17)	_
$2\pi^+2\pi^-\pi^0$	(-52, 33)	942.4(40.0)	11.70	34.6(15)(15)	
$2\pi^+2\pi^-\eta$	(-36, 28)	48.5(7.8)	3.46	6.0(10)(06)	
$\pi^{+}\pi^{-}3\pi^{0}$	(-76, 39)	182.7(20.9)	5.13	15.3(17)(13)	-
$2\pi^+2\pi^-2\pi^0$	(-64, 36)	350.0(22.9)	3.15	47.7(31)(21)	
$2\pi^+\pi^-$	(-30, 28)	2614.3(58.0)	50.63	33.1(07)(05)	
$\pi^{+}2\pi^{0}$	(-96, 44)	1968.0(51.7)	27.33	46.2(12)(09)	
$2\pi^+\pi^-\pi^0$	(-59, 35)	4649.5(83.5)	25.42	117.4(21)(21)	_
$\pi^{+}3\pi^{0}$	(-86, 39)	573.7(30.2)	8.83	41.7(22)(13)	_
$3\pi^{+}2\pi^{-}$	(-37, 33)	462.1(28.7)	16.26	18.2(11)(10)	
$2\pi^{+}\pi^{-}2\pi^{0}$	(-74, 39)	1207.1(45.4)	7.21	107.4(40)(30)	
$2\pi^+\pi^-\pi^0\eta$	(-51, 33)	191.4(15.9)	3.17	38.8(32)(12)	
$\pi^+4\pi^0$	(-90, 41)	56.7(10.4)	1.87	19.5(36)(23)	
$\pi^+ 3 \pi^0 \eta$	(-66, 37)	79.7(10.9)	1.77	28.9(40)(22)	
$3\pi^+2\pi^-\pi^0$	(-49, 34)	182.8(17.3)	5.02	23.4(22)(15)	
$2\pi^+\pi^-3\pi^0$	(-66, 37)	185.9(17.0)	3.49	34.2(31)(16)	

Decay	$\mathcal{B}^+_{ m sig}(imes 10^{-4})$	$\overline{\mathcal{B}^{-}_{\overline{\mathrm{sig}}}(\times 10^{-4})}$	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)
$\pi^+\pi^-\pi^0$	134.8 ± 1.8	133.3 ± 1.8	$+0.6\pm0.9\pm0.4$
$\pi^+\pi^-2\pi^0$	97.1 ± 2.6	102.3 ± 2.7	$-2.6\pm1.9\pm0.7$
$2\pi^+\pi^-$	33.5 ± 1.0	32.7 ± 1.0	$+1.2\pm2.1\pm0.6$
$\pi^+ 2\pi^0$	48.9 ± 1.8	43.4 ± 1.7	$+6.0 \pm 2.7 \pm 0.5$
$2\pi^+\pi^-\pi^0$	117.7 ± 3.0	116.8 ± 3.0	$+0.4\pm1.8\pm0.8$
$2\pi^+\pi^-2\pi^0$	102.7 ± 5.6	111.6 ± 5.8	$-4.2\pm3.8\pm1.3$

$D^{+(0)}$ decays involving kaons and pions <u>Phys. Rev. D 106, 032002 (2022)</u>

Signal mode	$\Delta E_{\rm sig}$ (MeV)	$N_{ m DT}^{ m fit}$	$N_{K_S^0, \text{sid}}$	$N_{\mathrm{DT}}^{\mathrm{net}}$	$\epsilon_{\rm sig}$ (%)	\mathcal{B}_{sig} (10 ⁻³)
$D^0 \rightarrow K^0_S \pi^0 \pi^0 \pi^0$	(-73, 34)	913 ± 33	86 ± 11	870 ± 36	4.90 ± 0.04	$7.64 \pm 0.30 \pm 0.29$
$D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0 \pi^0$	(-64, 33)	1560 ± 48		1560 ± 48	7.04 ± 0.06	$9.54 \pm 0.30 \pm 0.31$
$D^0 \rightarrow K_c^0 \pi^+ \pi^- \pi^0 \pi^0$	(-50, 30)	1253 ± 40	134 ± 14	1186 ± 40	4.04 ± 0.04	$12.66 \pm 0.45 \pm 0.43$
$D^+ ightarrow ec{K_S^0} \pi^+ \pi^0 \pi^0$	(-63, 34)	3513 ± 66	226 ± 19	3400 ± 66	$\textbf{7.51} \pm \textbf{0.07}$	$29.04 \pm 0.62 \pm 0.87$
$D^+ \rightarrow K_S^0 \pi^+ \pi^+ \pi^- \pi^0$	(-45, 30)	1097 ± 37	107 ± 14	1043 ± 38	4.38 ± 0.04	$15.28 \pm 0.57 \pm 0.60$
$D^+ \rightarrow K^{\bar 0}_S \pi^+ \pi^0 \pi^0 \pi^0$	(-43, 25)	294 ± 22	19 ± 7	285 ± 23	3.30 ± 0.03	$5.54 \pm 0.44 \pm 0.32$
$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0 \pi^0$	(-54, 31)	756 ± 39		756 ± 39	9.80 ± 0.07	$4.95 \pm 0.26 \pm 0.19$
$D^0 \rightarrow K^0_S K^0_S \pi^0$	(-45, 28)	65 ± 10	118 ± 13	$6 \pm 13 (< 24.6)$	7.06 ± 0.11	<0.145

$D^{+(0)} \to K \overline{K} \pi \pi$

Signal mode	$\Delta E_{ m sig}$	$N_{ m DT}^{ m fit}$	$N_{K_{S}^{0}}^{\mathrm{sid}}$	$N_{\rm DT}^{\rm net}$	$\epsilon_{ m sig}$ (%)	$\mathcal{B}_{ m sig}~(imes 10^{-3})$	\mathcal{B}_{PDG} (×10 ⁻³)
$D^0 \rightarrow K^+ K^- \pi^0 \pi^0$	(-59, 40)	132.1 ± 13.9		132.1 ± 13.9	8.20 ± 0.07	$0.69 \pm 0.07 \pm 0.04$	
$D^0 \rightarrow K^0_{\rm s} K^0_{\rm s} \pi^+ \pi^-$	(-22, 22)	82.1 ± 9.7	37.8 ± 7.5	63.2 ± 10.4	5.14 ± 0.04	$0.53 \pm 0.09 \pm 0.03$	1.22 ± 0.23
$D^0 ightarrow K^{ ilde{0}}_S K^{-} \pi^+ \pi^0$	(-43, 32)	278.8 ± 18.8	166.1 ± 15.1	195.8 ± 20.3	6.38 ± 0.06	$1.32 \pm 0.14 \pm 0.07$	
$D^{\hat{0}} \rightarrow K^{\hat{0}}_{S}K^{+}\pi^{-}\pi^{\hat{0}}$	(-44, 33)	124.0 ± 12.8	$9.5^{+3.7}_{-3.1}$	119.3 ± 12.9	7.94 ± 0.06	$0.65 \pm 0.07 \pm 0.02$	
$D^+ \rightarrow K^+ K^- \pi^+ \pi^0$	(-39, 30)	1311.7 ± 40.4		1311.7 ± 40.4	12.72 ± 0.08	$6.62 \pm 0.20 \pm 0.25$	26^{+9}_{-8}
$D^+ \rightarrow K^0_S K^+ \pi^0 \pi^0$	(-61,44)	35.9 ± 7.1	$3.8^{+2.8}_{-2.0}$	34.0 ± 7.2	3.77 ± 0.02	$0.58 \pm 0.12 \pm 0.04$	
$D^+ \rightarrow K^0_c K^- \pi^+ \pi^+$	(-22, 21)	505.0 ± 24.5	74.2 ± 10.3	467.9 ± 25.0	13.24 ± 0.08	$2.27 \pm 0.12 \pm 0.06$	2.38 ± 0.17
$D^+ ightarrow K^{0}_{S}K^+\pi^+\pi^-$	(-21, 20)	284.6 ± 18.0	$15.3^{+4.9}_{-4.2}$	277.0 ± 18.2	9.39 ± 0.06	$1.89 \pm 0.12 \pm 0.05$	1.74 ± 0.18
$D^+ \rightarrow K^0_S K^0_S \pi^+ \pi^0$	(-46, 37)	101.1 ± 11.3	42.0 ± 8.1	80.1 ± 12.0	3.84 ± 0.03	$1.34 \pm 0.20 \pm 0.06$	

Phys. Rev. D 102, 052006 (2020)

$D^{+(0)}$ decays involving η

Decay	$\Delta E_{\rm sig}$ (MeV)	N _{DT}	€ _{sig} (%)	$\mathcal{B}_{ m sig}$ (×10 ⁻⁴)
$D^0 \to K^- \pi^+ \eta$	(-37, 36)	6116.2 ± 81.8	14.22	185.3(25)(31)
$D^0 \to K^0_S \pi^0 \eta$	(-57, 45)	1092.7 ± 35.2	4.66	100.6(34)(30)
$D^0 \to K^+ K^- \eta$	(-27, 27)	13.1 ± 4.0	9.53	0.59(18)(05)
$D^0 \rightarrow K^0_S K^0_S \eta$	(-29, 28)	7.3 ± 3.2	2.36	1.33(59)(18)
$D^0 \to K^- \pi^+ \pi^0 \eta$	(-44, 36)	576.5 ± 28.8	5.53	44.9(22)(15)
$D^0 \rightarrow K^0_S \pi^+ \pi^- \eta$	(-33, 32)	248.2 ± 18.0	3.80	28.0(19)(10)
$D^0 \to K^{\bar{0}}_S \pi^0 \pi^0 \eta$	(-56, 41)	64.7 ± 9.2	1.58	17.6(23)(13)
$D^0 o \pi^+ \pi^- \pi^0 \eta$	(-57, 45)	508.6 ± 26.0	6.76	32.3(17)(14)
$D^+ \rightarrow K^0_S \pi^+ \eta$	(-36, 36)	1328.2 ± 37.8	6.51	130.9(37)(31)
$D^+ \rightarrow K^0_S K^+ \eta$	(-27, 27)	13.6 ± 3.9	4.72	1.85(52)(08)
$D^+ \rightarrow K^- \pi^+ \pi^+ \eta$	(-33, 33)	188.0 ± 15.3	8.94	13.5(11)(04)
$D^+ \rightarrow K^0_S \pi^+ \pi^0 \eta$	(-49, 41)	48.7 ± 9.7	2.57	12.2(24)(06)
$D^+ \rightarrow \pi^+ \pi^+ \pi^- \eta$	(-40, 38)	514.6 ± 25.7	9.67	34.1(17)(10)
$D^+ \to \pi^+ \pi^0 \pi^0 \eta$	(-70, 49)	192.5 ± 17.1	3.86	32.0(28)(17)
	0			
	Decay	$\mathcal{B}^+_{sig}~(imes 10^{-4})~\mathcal{B}^{\overline{sig}}~(imes 10^{-4})$	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)	
	$D^0 o K^- \pi^+ \eta$	$182.1 \pm 3.5 189.1 \pm 3.6$	$-1.9\pm1.3\pm1.0$	
	$D^0 ightarrow K^0_S \pi^0 \eta$	$98.4 \pm 4.8 106.3 \pm 5.1$	$-3.9\pm3.2\pm0.8$	
	$D^0 ightarrow K^- \pi^+ \pi^0 \eta$	$41.7 \pm 2.7 \qquad 48.8 \pm 3.2$	$-7.9\pm4.8\pm2.5$	
	$D^0 o \pi^+ \pi^- \pi^0 \eta$	$29.8 \pm 2.2 \qquad 33.3 \pm 2.5$	$-5.5\pm5.2\pm2.4$	
	$D^+ \to K^0_S \pi^+ \eta$	$129.9 \pm 5.3 132.3 \pm 5.4$	$-0.9\pm2.9\pm1.0$	
	$D^+ ightarrow \pi^+ \pi^- \pi^- \eta$	35.4 ± 2.4 33.7 ± 2.4	$+2.5 \pm 5.0 \pm 1.6$	

 $\mathbf{D}^{+(\mathbf{0})} \rightarrow K \pi \omega$

$$E^{+} \equiv \frac{\mathcal{B}(D^{+} \to K_{S}^{0} \pi^{+} \omega)}{\mathcal{B}(D^{0} \to K^{-} \pi^{+} \omega)} = 0.21 \pm 0.01_{stat.} \pm 0.01_{syst.} (0.9)$$

$D^{+(0)} \rightarrow \omega \pi \pi, \eta \pi \pi$

SCS

Decay mode	$N_{ m SG}^{\omega/\eta}$	f(%)	$N_{ m SB}^{\omega/\eta}$	$N_{\rm peak}^{\rm BKGV}$	$N_{ m DT}^{ m sig}$	Sig.	\mathcal{B}^{int}	$\mathcal{B}^{ m sig}(imes 10^{-3})$	$\mathcal{B}_{\rm PDG}(\times 10^{-3})$
$D^0 o \omega \pi^+ \pi^-$	908.0 ± 39.4	74.6 ± 1.5	610.5 ± 35.1	41.4 ± 2.5	411.2 ± 48.3	12.9 <i>σ</i>	0.882	$1.33 \pm 0.16 \pm 0.12$	1.6 ± 0.5
$D^+ \to \omega \pi^+ \pi^0$	$\textbf{474.0} \pm \textbf{42.8}$	73.3 ± 1.2	329.0 ± 34.3		232.9 ± 49.8	7.7σ	0.872	$3.87 \pm 0.83 \pm 0.25$	
$D^0 \to \omega \pi^0 \pi^0$	20.2 ± 10.5	75.2 ± 5.6	$\textbf{22.1} \pm \textbf{10.0}$	19.0 ± 1.2	-15.4 ± 13.0	0.6σ	0.862	< 1.10	
$D^0 o \eta \pi^+ \pi^-$	151.3 ± 14.6	42.6 ± 0.9	115.0 ± 15.3	6.1 ± 0.2	96.2 ± 16.0	8.3σ	0.227	$1.06 \pm 0.18 \pm 0.07$	1.09 ± 0.16
$D^+ \rightarrow \eta \pi^+ \pi^0$	61.5 ± 14.3	41.4 ± 0.7	47.3 ± 16.4		41.9 ± 15.8	3.5σ	0.224	$2.47 \pm 0.93 \pm 0.16$	1.38 ± 0.35
$D^0 o \eta \pi^0 \pi^0$	5.7 ± 3.8	40.6 ± 3.3	13.1 ± 4.8	2.0 ± 0.1	-1.6 ± 4.3	0.1 σ	0.221	< 2.38	$\textbf{0.38} \pm \textbf{0.13}$

 $D^0 \to K_L X, \qquad X = \phi/\eta/\omega/\eta'$

Decay	B _{exp} (%)	B _{FAT} (%)	Difference	$\mathcal{R}(D^0)_{\mathrm{exp}}$	$\mathcal{B}(D^0)_{\mathrm{FAT}}$	Difference
$D^0 \to K^0_L \phi$	$0.414 \pm 0.021 \pm 0.010$	0.33 ± 0.03	2.2σ	-0.001 ± 0.047		2.4σ
$D^0 \to K_L^{\widetilde{0}} \eta$	$0.433 \pm 0.012 \pm 0.010$	0.40 ± 0.07	0.5σ	0.080 ± 0.022	0.112 + 0.001	1.5σ
$D^0 \to K_L^{\overline{0}} \omega$	$1.164 \pm 0.022 \pm 0.028$	0.95 ± 0.15	1.4σ	-0.024 ± 0.031	0.115 ± 0.001	4.4σ
$D^0 o K_L^{\overline{0}} \eta'$	$0.809 \pm 0.020 \pm 0.016$	0.77 ± 0.07	0.5σ	0.080 ± 0.023		1.6σ

Decay	$\mathcal{B}^+_{\mathrm{sig}}$ (%)	$\mathcal{B}_{\mathrm{sig}}^{-}$ (%)	$\mathcal{A}_{CP}^{\mathrm{sig}}$ (%)
$D^0 \to K^0_L \phi$	0.428 ± 0.029	0.405 ± 0.034	$2.7 \pm 5.4 \pm 0.7$
$D^0 \to K_L^{\widetilde{0}} \eta$	0.445 ± 0.018	0.421 ± 0.017	$2.8\pm2.9\pm0.4$
$D^0 \to K_L^{\widetilde{0}} \omega$	1.200 ± 0.030	1.121 ± 0.031	$3.4\pm1.9\pm0.6$
$D^0 \to K_L^{\widetilde{0}} \eta'$	0.789 ± 0.028	0.826 ± 0.028	$-2.2\pm2.5\pm0.4$

Polarizations in $D^0 \rightarrow \omega \phi$

• $D^0 \rightarrow \omega \phi$ is observed for the first time:

 $\mathcal{B}(D^0 \to \omega \phi)$

 $= (6.48 \pm 0.96_{\text{stat.}} \pm 0.40_{\text{syst.}}) \times 10^{-4}$

with a significance of 6.3σ

Black dots: data Black curves: fit results Green: longitudinal Cyan: PHSP

• ω and φ are transversely polarized
 Its → Contradict existing model
 predictions
 <u>Phys. Rev. D 81, 114020 (2010);</u>
 J. High Energy Phys. 03 (2014) 042

Definitions in $D^0 \rightarrow \omega \phi$

 θ_{ω} is the angle between $\mathbf{p}_{\pi^+}^{\omega} \times \mathbf{p}_{\pi}^{\omega}$ and $-\mathbf{p}_{D^0}^{\omega}$ in the ω rest frame, and θ_K is the angle between $\mathbf{p}_{K^-}^{\phi}$ and $-\mathbf{p}_{D^0}^{\phi}$ in the ϕ rest frame. Here, $\mathbf{p}_{\pi^+}^{\omega}$, $\mathbf{p}_{\pi^-}^{\omega}$, $\mathbf{p}_{K^-}^{\phi}$, and $\mathbf{p}_{D^0}^{\omega/\phi}$ are the momenta of the π^+ , π^- , K^- , and D^0 in the rest frame of either the ω or ϕ meson, respectively.

Decay	PDG	Cheng et al. [3]		Chong of al [1]	Vu ot al [9]	Liotal [4]	Wang of al [5]
	<mark>[6</mark>]	SU(3)	SU(3)-breaking	Oneng et al. [1]	ти ес ан. [4]	Li et al. [4]	wang et al. [9]
$K^+\eta'$	1.8 ± 0.6	1.23 ± 0.06	1.49 ± 0.08	1.07 ± 0.17	1.4 ± 0.4	1.92	3.1 ± 0.4
$\eta'\pi^+$	39.4 ± 2.5			38.2 ± 3.6	46 ± 6	34.4	46.7 ± 6.2
$K^+\eta$	1.77 ± 0.35	0.91 ± 0.03	0.86 ± 0.03	0.78 ± 0.09	0.8 ± 0.5	1.00	0.91 ± 0.20
$\eta \pi^+$	17.0 ± 0.9	_		18.2 ± 3.2	19 ± 5	16.5	19.6 ± 4.4
$K^+K^0_S$	15.0 ± 0.5			14.85 ± 1.60	15.0 ± 4.5	15.0	15.0 ± 1.6
$K_{S}^{0}\pi^{+}$	1.22 ± 0.06	1.20 ± 0.04	1.27 ± 0.04	1.365 ± 0.130	1.4 ± 0.3	1.105	1.04 ± 0.13
$K^+\pi^0$	0.63 ± 0.21	0.86 ± 0.04	0.56 ± 0.02	0.86 ± 0.09	0.5 ± 0.2	0.67	0.69 ± 0.03

$$\begin{split} \mathcal{B}(D_s^+ \to K^+ \eta') &= (2.68 \pm 0.17 \pm 0.17 \pm 0.08) \times 10^{-3}, \\ \mathcal{B}(D_s^+ \to \eta' \pi^+) &= (37.8 \pm 0.4 \pm 2.1 \pm 1.2) \times 10^{-3}, \\ \mathcal{B}(D_s^+ \to K^+ \eta) &= (1.62 \pm 0.10 \pm 0.03 \pm 0.05) \times 10^{-3}, \\ \mathcal{B}(D_s^+ \to \eta \pi^+) &= (17.41 \pm 0.18 \pm 0.27 \pm 0.54) \times 10^{-3}, \\ \mathcal{B}(D_s^+ \to K^+ K_S^0) &= (15.02 \pm 0.10 \pm 0.27 \pm 0.47) \times 10^{-3}, \\ \mathcal{B}(D_s^+ \to K_S^0 \pi^+) &= (1.109 \pm 0.034 \pm 0.023 \pm 0.035) \times 10^{-3}, \\ \mathcal{B}(D_s^+ \to K^+ \pi^0) &= (0.748 \pm 0.049 \pm 0.018 \pm 0.023) \times 10^{-3}, \end{split}$$

BFs	This work	PDG [6]
$B(\eta'\pi^+)$	$7.07 \pm 0.46 \pm 0.11$	4.2 ± 1.3
${\cal B}(\eta\pi^+)$	$9.31 \pm 0.58 \pm 0.10$	8.9 ± 1.6
$(K^+ K_S^0)$	$7.38 \pm 0.23 \pm 0.09$	8.12 ± 0.28
$(K^+\eta')$	$60.6\pm5.4\pm3.6$	
$(\eta'\pi^+)$	$46.0\pm0.7\pm2.1$	