(Semi-)leptonic charmed meson decays at BESIII

吴潇

复旦大学

2022年8月22日

Outline

1 Introduction

2 Leptonic Decays of D_s^+ • $D_s^+ \to \tau^+ (\tau^+ \to e^+ \nu_e \bar{\nu}_\tau) \nu_\tau$ • $D_s^+ \to \tau^+ (\tau^+ \to \pi^+ \pi^0 \bar{\nu}_\tau) \nu_\tau$ • $D_s^+ \to \tau^+ (\tau^+ \to \pi^+ \bar{\nu}_\tau) \nu_\tau$

3 Semileptonic Decays of $D^{0(+)}$ and D_s^+ • $D^0 \rightarrow K_1(1270)^- e^+ \nu_e$ • $D^{0(+)} \rightarrow \bar{K}e^+ \nu_e$ • $D^0 \rightarrow \rho^- \mu^+ \nu_\mu$ • $D_s^+ \rightarrow Xe^+ \nu_e$ • $D_s^+ \rightarrow f_0 e^+ \nu_e$ • $D_s^+ \rightarrow a_0(980) e^+ \nu_e$

• $D_s^+ \rightarrow \pi^0 e^+ \nu_e$

Introduction

- 测量衰变常数 f_{D^+} 和形状因子 $f_+(0)$,检验理论格点 QCD 的计算
- 测量 CKM 矩阵元 | V_{cs(d)} |, 检验 CKM 矩阵的幺正性
- 精确检验 μ − e, τ − μ 轻子普适性

Double-tag method for $D^0 \overline{D}^0$ and $D^+ D^-$

The yields of tag modes can be written as

$$N_{\rm tag} = 2 \cdot N_{D\bar{D}} \cdot \mathcal{B}_{\rm tag} \cdot \varepsilon_{\rm ST} \qquad (1)$$

The signal yields can be written as

by

$$|\mathcal{B}_{\rm sig} = \frac{N_{\rm sig}/(\varepsilon_{DT}/\varepsilon_{ST})}{N_{\rm tag}}$$
(3)

 $(\overline{ST}) \cdots D^{-} / \overline{D}^{0}$

Double-tag method for $D^0 \overline{D}^0$ and $D^+ D^-$

9 possible single tags at BESIII $$N_{ST(D^0\bar{D}^0)}\sim\!2.3{\rm M}$ and $N_{ST(D^+D^-)}\sim\!1.5{\rm M}$ with 9 tags @3.773 GeV<math display="inline">\sim\!2.93{\rm fb}^{-1}$$

signal side: $X (X = e, \mu, hadron)$ is reconstructed, the missing neutrinos are determined by

$$\begin{split} & M_{\rm miss}^2 = E_{\rm miss}^2 - |\overrightarrow{p}_{\rm miss}|^2 \\ & E_{\rm miss} = E_{\rm cm} - \sqrt{|\overrightarrow{p}_{\rm tag}|^2 + m_D} - E_X \\ & \overrightarrow{p}_{\rm miss} = -\overrightarrow{p}_{\rm tag} - \overrightarrow{p}_X \end{split}$$

Double-tag method for $D_s^{*\pm} D_s^{\mp}$

Double-tag method for $D_s^{*\pm} D_s^{\mp}$

16 possible single tags at BESIII $$N_{ST}\sim0.78 {\rm M}$$ with 16 tags @4.178-4.226 GeV~3.19fb^{-1}+3.13fb^{-1}\$

signal side: $X (X = \pi, e, \mu)$ is reconstructed, the missing neutrinos are determined by

$$\begin{array}{l} M_{\mathrm{miss}}^2 = E_{\mathrm{miss}}^2 - |\overrightarrow{p}_{\mathrm{miss}}|^2 \\ E_{\mathrm{miss}} = \\ E_{\mathrm{cm}} - \sqrt{|\overrightarrow{p}_{\mathrm{tag}}|^2 + m_{D_{\mathrm{s}}}^2} - E_{\gamma(\pi^0)} - E_X \\ \overrightarrow{p}_{\mathrm{miss}} = -\overrightarrow{p}_{\mathrm{tag}} - \overrightarrow{p}_{\gamma(\pi^0)} - \overrightarrow{p}_X \end{array}$$

Leptonic Decays of D_s^+ $D_s^+ \to \tau^+ (\tau^+ \to e^+ \nu_e \bar{\nu}_\tau) \nu_\tau$

$$D_s^+ \to \tau^+ \nu_\tau$$
 via $\tau^+ \to e^+ \nu_e \bar{\nu}_\tau$

 $E_{\rm extra}^{\rm tot}$: the total energy of the good EMC showers, excluding FSR and those associated in ST_____

8/22

Leptonic Decays of D_s^+ $D_s^+ \to \tau^+ (\tau^+ \to \pi^+ \pi^0 \bar{\nu}_\tau) \nu_\tau$

$$D_s^+ \to \tau^+ \nu_\tau$$
 via $\tau^+ \to \pi^+ \pi^0 \bar{\nu}_\tau$

 $N_{\rm DT} = 1745 \pm 84$ $\mathcal{B}(D_s^+ \to \tau^+ \nu_{\tau}) = (5.29 \pm 0.25 \pm 0.20)\%$

 $f_{D_s^+}|V_{cs}| = (244.8 \pm 5.8 \pm 4.8) \text{ MeV}$ Precision: 3.1%

Leptonic Decays of D_s^+ $D_s^+ \to \tau^+ (\tau^+ \to \pi^+ \bar{\nu}_\tau) \nu_\tau$

$$D_s^+ \to \tau^+ \nu_\tau$$
 via $\tau^+ \to \pi^+ \bar{\nu}_\tau$

An unbinned simultaneous maximum likelihood fit to two dimensional distributions

$$\begin{split} & \mathcal{N}(D_s^+ \to \mu^+ \nu_\mu) = 2198 \pm 55 \ \mathcal{N}(D_s^+ \to \tau^+ \nu_\tau) = 946^{+46}_{-45} \\ & \mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (0.535 \pm 0.013 \pm 0.016)\% \ \mathcal{B}(D_s^+ \to \tau^+ \nu_\tau) = (5.21 \pm 0.25 \pm 0.17)\% \\ & f_{D_s^+}|V_{cs}|_\mu = (243.1 \pm 3.0 \pm 3.8) \ \mathrm{MeV} \qquad f_{D_s^+}|V_{cs}|_\tau = (243.0 \pm 5.8 \pm 4.1) \ \mathrm{MeV}_{-10/22} \end{split}$$

Comparison of $f_{D_s^+}$ and $|V_{cs}|$

With the values of G_F , m_{D_s} , m_{τ} , and τ_{D_s} [PDG 2022]. Input $|V_{cs}|_{\text{CKMFitter}} = 0.97349 \pm 0.00016$ Input $f_{D_s^+ | OCD} = (249.9 \pm 0.5)$ MeV

ETM(2+1+1) FMILC(2+1+1) FLAG19(2+1+1)	PRD91(2015)054507 PRD98(2018)074512 arXiv:1902.08191 [hep-lat]	247.2±4.1 249.9±0.4 249.9±0.5	H
HFLAV18 CLEO CLEO CLEO BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹	$\begin{array}{l} {\rm EP1C81(2021)226} \\ {\rm PRD79(2009)652002, \ \nabla_V \\ {\rm PRB9(2009)12004, \ \nabla_V \\ {\rm PRD79(2009)652001, \ }_V \\ {\rm PRD78(22010901103, \ }_{\pi_{\rm SL}V} \\ {\rm JHEP09(2013)139, \ }_{\pi_{\rm SL}K} \\ {\rm JHEP09(2013)139, \ }_{\pi_{\rm SL}K} \\ {\rm JHEP09(2013)139, \ }_{\rm RD79(2005)2001, \ }_{\rm HV} \\ {\rm PRD79(2009)52001, \ }_{\rm HV} \\ {\rm JHEP09(2013)139, \ }_{\rm HV} \\ {\rm JHEP09(2013)139, \ }_{\rm HV} \\ {\rm JHEP09(2013)139, \ }_{\rm HV} \\ {\rm JHEP09(2013)19, \ }_{$	254.5+3.2 251.8±11.2±5.3 257.0±13.3±5.0 277.1±17.5±4.0 244.6±8.6±12.0 261.1±4.8±7.2 245.5±17.8±5.1 256.7±10.2±4.0 264.9±8.4±7.6 248.8±6.6±4.8 253.0±3.7±3.6	
BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII 6.32 fb ⁻¹ BESIII BESIII	$\begin{array}{c} & \text{PRD104(2021)052009, } \mu\nu\\ & \text{PRD104(2021)052009, } \tau_{\mu\nu} \\ & \text{PRD104(2021)032001, } \tau_{\mu\nu} \\ & \text{PRL127(2021)171801, } \tau_{\mu\nu} \\ & \mu\nu \textbf{3.19} \ \textbf{m}^{-1} + \tau\nu \textbf{6.32} \ \textbf{m}^{-1} \\ & \textbf{100} \\ & f_{D^+_{L}} \left[MeV \right] \end{array}$	249.8+3.0±3.9 249.7±6.0±4.2 251.6±5.9±4.9 251.4±2.4±3.0 251.4±1.8±2.2 200	Here Here Met Met Combined

CKMFitter HFLAV18	PTEP2020(2020)083C01 EPJC81(2021)226	0.97320±0.00011 0.969±0.010	
CLEO CLEO CLEO BaBar Belle BESIII 0.482 fb ⁻¹ CLEO BaBar Belle BESIII 3.19 fb ⁻¹	$\label{eq:product} \begin{split} & PRD79(2009)052002, \ \tau_{v} \nu \\ & PRD80(2009)112004, \ \tau_{v} \nu \\ & PRD79(2009)052001, \ \tau_{v} \nu \\ & PRD82(2010)091103, \ \tau_{m} \nu \\ & PRD94(2105)2004, \ \mu \nu \\ & PRD94(2105)2004, \ \mu \nu \\ & PRD92(2009)052001, \ \mu \nu \\ & PRD92(2101)30, \ \mu \nu \\ & PRD79(2009)052001, \ \mu \nu \\ & PRD92(2101)30, \ \mu \nu \\ & PRD12(2019)071802, \ \mu \nu \end{split}$	0.981±0.044±0.021 1.001±0.052±0.019 1.079±0.068±0.016 0.953±0.033±0.047 1.017±0.019±0.028 0.956±0.069±0.020 1.000±0.040±0.016 1.032±0.033±0.029 0.969±0.026±0.014	
BESIII 6.32 fb ⁻¹ BESIII	$ \begin{array}{c} \mbox{PRD 104, 052009 (2021), $\mu\nu$} \\ \mbox{PRD 104, 052009 (2021), $\tau_{\mu}\nu$} \\ \mbox{PR 0 104, 032001 (2021), $\tau_{\mu}\nu$} \\ \mbox{PR 1.127, 171801 (2021), $\tau_{\mu}\nu$} \\ \mbox{$\mu\nu$, 159 fi^3 + $\tau\nu$ 632 fb^3 } \\ \mbox{-1} \\ \mbox{$ V_{cs} $} \end{array} $	0.973±0.012±0.015 0.972±0.023±0.016 0.980±0.023±0.019 0.978±0.009±0.012 0.979±0.007±0.008	Combined

Test of Lepton flavor universality

Combined results: $\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu) = (5.43 \pm 0.15) \times 10^{-3}$ $\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau) = (5.32 \pm 0.11)\%$

$$R_{D_s} = \frac{\mathcal{B}(D_s^+ \to \mu^+ \nu_\mu)}{\mathcal{B}(D_s^+ \to \tau^+ \nu_\tau)} = 9.82 \pm 0.36$$
 SM prediction: 9.75
No LFU violation in $\tau - \mu$ flavors with the current precision.

5

Semileptonic Decays of $D^{0(+)}$ and D_s^+ $D^0 \to K_1(1270)^- e^+ \nu_e$

Observation of $D^0 \to K_1(1270)^- e^+ \nu_e$

Two dimensional unbinned extended maximum likelihood simultaneous fits $(K_1(1270)^- \rightarrow K^- \pi^+ \pi^-)$.

Measurement of branching fractions of $D^{0(+)} \rightarrow \bar{K}e^+\nu_{P}$

Independent measurement with new method at BESIII.

 $N_{\rm sig} = N_{D\bar{D}} \mathcal{B}^2(D \to \bar{K} e \nu_e) \epsilon_{\rm sig} \Rightarrow \mathcal{B}(D \to \bar{K} e \nu_e) = \sqrt{\frac{N_{\rm sig}}{N_{D\bar{D}} \epsilon_{\rm sig}}}$

 $\mathcal{B}(D^0 \to K^- e^+ \nu_e) = (3.567 \pm 0.031 \pm 0.021)\%$ $\mathcal{B}(D^+ \to \bar{K}e^+\nu_e) = (8.68 \pm 0.14 \pm 0.16)\%$ $\frac{\Gamma_{(D^0 \to K^- e^+ \nu_e)}}{\Gamma_{(D^+ \to \bar{K}e^+ \nu_e)}} = 1.039 \pm 0.021 (\text{Support isospin symmetry within } 1.9\sigma)$ Semileptonic Decays of $D^{0(+)}$ and D_s^+ $D^0 \to \rho^- \mu^+ \nu_\mu$

Observation of $D^0 \rightarrow \rho^- \mu^+ \nu_\mu$

First measurement of $D^0 \rightarrow \rho^- \mu^+ \nu_\mu (\rho^- \rightarrow \pi^- \pi^0)$ PRD104(2021)L091103

Precision measurement of $D_s^+ \to X e^+ \nu_e$

Sort recoil side selected tracks into eighteen momentum (p_e) bins for $p_e > 200$ MeV/c

$$\begin{split} \mathcal{B}(D_s^+ \to Xe^+\nu_e) &- \sum_i \mathcal{B}(D_s^+ \to X_ie^+\nu_e)_{known} = (-0.04 \pm 0.13 \pm 0.20) \times 10^{-2} \\ \text{No evidence for the existence of unobserved } D_s^+ \text{semileptonic decay modes} \\ \frac{\Gamma_{D_s^+ \to Xe^+\nu_e}}{\Gamma_{D^0 \to Xe^+\nu_e}} &= 0.790 \pm 0.016 \pm 0.020 \quad (\text{consistent with prediction} \sim 0.813) \end{split}$$

Semileptonic Decays of $D^{0(+)}$ and D_s^+ $D_s^+ \rightarrow f_0 e^+ \nu_e$

Measurement of branching fraction of $D_s^+ \to f_0 e^+ \nu_e$

Two dimensional unbinned extended maximum likelihood fit $(f_0 \rightarrow \pi^0 \pi^0)$.

PRD105(2022)L031101

 $N_{\rm DT} = 54.8 \pm 10.1$

 $\mathcal{B}(D_s^+ \to f_0(980)e^+\nu_e) = (7.9 \pm 1.4 \pm 0.4) \times 10^{-4}$

 $\mathcal{B}(D_s^+ \to f_0(500)e^+\nu_e) < 7.3 \times 10^{-4}$

$$\mathcal{B}(D_s^+
ightarrow K_s^0 K_s^0 e^+
u_e) < \ 3.8 imes 10^{-4}$$

17 / 22

Search for $D_s^+ \to a_0(980)e^+\nu_e$

PRD103(2021)092004

No significant signal is observed

 $\mathcal{B}(\textit{D}^+_{\textit{s}} \rightarrow \textit{a}_0(980)\textit{e}^+\nu_{\textit{e}}) \times \mathcal{B}(\textit{a}_0(980) \rightarrow \pi^0\eta) < 1.2 \times 10^{-4}$

Search for $D_s^+ \to \pi^0 e^+ \nu_e$

arXiv:2206.13870

No significant signal is observed

 $\mathcal{B}(D_{e}^{+} \to \pi^{0} e^{+} \nu_{e}) < 6.4 \times 10^{-5}$ consistent with the predicted BF of $D_s^+ \to \pi^0 e^+ \nu_e$, $(2.65 \pm 0.38) \times 10^{-5}$

Conclusions

Prospects

- More analyses of $D_s \to \mu \nu_\mu$ and $D_s \to \tau \nu_\tau$
- Improved analyses of $D_s \to \eta^{(\prime)} \ell \nu$
- \bullet Improved analyses of $D_s \to K^0 \ell \nu$
- Improved analyses of $D_s \to K K \ell \nu$
- Improved analyses of $D_s \to \pi \pi \ell \nu$
- Improved measurements of $D \to \mu \nu_\mu$ and $D \to \tau \nu_\tau$
- \bullet Improved measurements of $D^{0(+)} \rightarrow ({\rm P,V,S},$ and ${\rm A}) \ell \nu$

Conclusions

In recent two years, with 2.93 fb⁻¹ at 3.773 GeV and 6.32 fb⁻¹ from 4.178-4.226 GeV data samples, BESIII have studied leptonic and semi-leptonic decays.

• Precisely measured

$$D_{s}^{+} \rightarrow \tau^{+} \nu_{\tau}$$
• $\tau^{+} \rightarrow e \nu_{e} \bar{\nu}_{\tau}$
• $\tau \rightarrow \pi^{+} \pi^{0} \bar{\nu}_{\tau}$

•
$$\tau \to \pi \bar{\nu}_{\tau}$$

•
$$D_s^+ \to \mu^+ \nu_\mu$$

• $D_s^+ \to X e^+ \nu_e$

- First observation for
 - $D^0 \to K_1(1270)^- e^+ \nu_e$ • $D^0 \to \rho^- \mu^+ \nu_\mu$

• Searches for

•
$$D_s^+ \rightarrow a_0(980)e^+\nu_e$$

• $D_s^+ \rightarrow \pi^0 e^+\nu_e$

• New method • $D^{0(+)} \rightarrow \bar{K}e^+\nu_e$

In the near future, BESIII will collect 20 fb⁻¹@ 3.773 GeV data sample, and another 3fb⁻¹@ 4.178 GeV, the precisions will be further improved.

Thank you!