

CKM angle γ measurements at LHCb and expected inputs from BESIII

Xiaokang Zhou

University of Chinese Academy of Sciences (UCAS)

22/08/2022

BESIII实验上粲强子、QCD及新物理研讨会

2

Introduction • Method to measure γ \blacktriangleright Latest γ results @ LHCb Quantum-correlated inputs from BESIII Joint measurement by LHCb&BESIII **Future** prospect of γ Summary

Why measure γ

- Extrapolate γ from measurement of α and β
- Measured using loop-level decays: sensitivity to NP
- CKMFitter latest: $\gamma = (65.5^{+1.1}_{-2.7})^{o}$

Disagreement = New Physics!

$$V_{\rm CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \longrightarrow \gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

- Measure γ directly using treelevel decays
- Theoretically clean(δγ/γ<10⁻⁷)
 [JHEP 1401(2014)051]
- HFLAV latest: $\gamma = (65.9^{+3.3}_{-3.5})^{o}$
- LHCb dominated: $\gamma = (65.4^{+3.8}_{-4.2})^o$ [JHEP 12(2021)141]

How to measure γ directly

- Interference between favoured b→c and suppressed b→u decay amplitude
- Ideal decays: $B \rightarrow DK$

4

BESIII实验上粲强子、QCD及新物理研讨会2022

Evolution of γ results

LHCb dominates current world averages of direct γ measurements

- The focus of this talk:
 - LHCb latest results
 - The LHCb γ combination and a look towards the future

GLW method^[1,2]

6

• Consider CP-even final states such as $D \rightarrow K^+K^-, \pi^+\pi^-$

BESIII实验上粲强子、QCD及新物理研讨会2022

[1] M. Gronau and D. Wyler, Phys. Lett. B265 (1991) 172
 [2] M. Gronau and D. London, Phys. Lett. B253 (1991) 483

GLW method

- Use the yields of B+ and B- to construct observables related to γ
- Asymmetry between flavors:

$$A^{hh} = \frac{N(B^- \to [hh]_D K^-) - N(B^+ \to [hh]_D K^+)}{N(B^- \to [hh]_D K^-) + N(B^+ \to [hh]_D K^+)} = \frac{2r_B \sin \delta_B \sin \gamma}{R^{hh}}$$

Ratio of total yield w.r.t Cabibbo-favored decay $K\pi$

$$R^{hh} = \frac{N(B^- \to [hh]_D K^-) + N(B^+ \to [hh]_D K^+)}{N(B^- \to [K\pi]_D K^-) + N(B^+ \to [K\pi]_D K^+)} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

■ Can also use $D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: insert a factor of (2F₊-1) before interference terms (F₊=CP even content = 0.769+-0.023^[1])

BESIII实验上粲强子、QCD及新物理研讨会2022

[1] JHEP 01 (2018) 144

ADS method^[1,2]

• Consider the Cabibbo-favored decay $D^0 \rightarrow K^-\pi^+$ and doubly-Cabibbosuppressed decay $D^0 \rightarrow K^+\pi^-$

• Treat similarly to GLW, except the input D parameters r_D and δ_D

Can also use D-K3 π , with a coherence factor $\kappa_{K3\pi}$, and $r_{K3\pi}$ and $\delta_{K3\pi}$ averaged over phase space

 $\Gamma(B^{0} \to DK^{*0}) \propto (r_{D}^{2} + r_{B}^{DK^{*0}} + 2\kappa r_{D}r_{B}^{DK^{*0}} \cos(\delta_{B}^{DK^{*0}} + \delta_{D} + \gamma)$ $\Gamma(\overline{B}^{0} \to D\overline{K}^{*0}) \propto r_{D}^{2} + r_{B}^{DK^{*0}} + 2\kappa r_{D}r_{B}^{DK^{*0}} \cos(\delta_{B}^{DK^{*0}} + \delta_{D} - \gamma)$ $R_{+}^{\pi K} = \frac{\Gamma(B^{0} \to [\pi^{-}K^{+}]_{D}\overline{K}^{*0})}{\Gamma(B^{0} \to [\pi^{+}K^{-}]_{D}K^{*0})}$ $R_{+}^{\pi K} = \frac{\Gamma(B^{0} \to [\pi^{+}K^{-}]_{D}K^{*0})}{\Gamma(B^{0} \to [K^{+}\pi^{-}]_{D}K^{*0})}$ Need inputs from charm factory

BESIII实验上粲强子、QCD及新物理研讨会2022

[1] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78 (1997) 3257[2] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. D63 (2001) 036005

8

BPGGSZ method^[1]

9

- Divide the phase space of D→Ksh⁺h⁻ decays into bins and measure the yields of B⁺ and B⁻ in each
 - Analysis is independent of modelling of D decay
 - Sensitivity from phase-space distribution, not overall asymmetries

 not impacted by production/detection asymmetries

BESIII实验上粲强子、QCD及新物理研讨会2022

[1] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68 (2003) 054018

γ from $B^{\pm} \rightarrow D[h^{\pm}h'^{\mp}\pi^0]h^{\pm}$ decays

- π⁰ reconstruction is challenge..
- Three D decays

10

- $D \rightarrow K\pi\pi^0$ (pictured)
- $\square D \to \pi\pi\pi^0$
- $\square D \to KK\pi^0$
- Two B decays
 - $\blacksquare B^+ \to DK^+$
 - $\blacksquare B^+ \to D\pi^+$
- Full Run 1&2 Data set
 - $\begin{array}{rcl} \gamma & = & (56 {}^{+24}_{-19})^{\circ}, \\ \delta_B & = & (122 {}^{+19}_{-23})^{\circ}, \\ r_B & = & (9.3 {}^{+1.0}_{-0.9}) \times 10^{-2} \end{array}$

BESIII实验上粲强子、QCD及新物理研讨会2022

JHEP 07(2022) 099

γ from $B^{\pm} \rightarrow D[K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]h^{\pm}$ decays

Measure observables in 4 bins of D-decay phase-space (PLB 802(2020)135188)

BESIII实验上粲强子、QCD及新物理研讨会2022

11

LHCb-PAPER-2022-017

LHCb y combination [LHCb-CONF-2021-001]

B decay

- Best knowledge of γ comes from combination of many measurement
- Maximum likelihood fit
 - 151 observables
 - 52 free parameters
- Most precise determination of γ by a single experiment:

 $\gamma = (65.4 \, {}^{+\, 3.8}_{-\, 4.2})^\circ$

BESIII实验上粲强子、QCD及新物理研讨会2022

	$B^\pm \to D h^\pm$	$D \to h^+ h^-$	Run 1&2
	$B^\pm o Dh^\pm$	$D \to h^+ \pi^- \pi^- \pi^+$	Run 1
	$B^{\pm} ightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	$\operatorname{Run} 1$
	$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m s}^0 h^+ h^-$	Run $1\&2$
	$B^\pm o Dh^\pm$	$D ightarrow K_{ m s}^0 K^{\pm} \pi^{\mp}$	$\operatorname{Run} 1\&2$
	$B^{\pm} ightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	Run $1\&15/16$
	$B^{\pm} ightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^- \pi^+$	Run $1\&15/16$
	$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \to h^+ \pi^- \pi^- \pi^+$	$\operatorname{Run} 1$
	$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$	Run 1&15/16
	$B^0 ightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^- \pi^+$	Run $1\&15/16$
	$B^0 \rightarrow DK^{*0}$	$D ightarrow K_{ m s}^0 h^+ h^-$	Run 1
	$B^0 ightarrow D^{\mp} \pi^{\pm}$	$D^+ ightarrow {ar K}^- \pi^+ \pi^+$	Run 1
	$B^0_s \to D^{\mp}_s K^{\pm}$	$D^+_s \rightarrow h^+ h^- \pi^+$	Run 1
NEW!	$B_s^0 ightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	Run 1&2
C			
	D decay	Observable(s)	Data set
	$D^0 o h^+ h^-$	ΔA_{CP}	Run 1&2
	$D^0 o h^+ h^-$	y_{CP}	$\operatorname{Run} 1$
	$D^0 ightarrow h^+ h^-$	ΔY	Run $1\&2$
	$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm},(x^{\prime\pm})^2,y^{\prime\pm}$	Run 1
	$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm},(x^{\prime\pm})^2,y^{\prime\pm}$	Run $1\&15/16$
	$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	Run 1
	$D^0 ightarrow K^0_{ m s} \pi^+ \pi^-$	x,y	$\operatorname{Run} 1$
	$D^0 ightarrow K^{ar 0}_{ m s} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	Run 1&2

D decay

Data set

+ Critical input from BES-III (/CLEO-c) for D decay parameters

JHEP 12(2021)141

Results across different B decays

- Results are dominated by B+ decays
- New physics could lead to different results in different B decays
- Different B modes agree at 2σ level
- Different modes have different challenges and systematics:
 - Important to check consistency between modes

JHEP 12(2021)141

Results across different D decays

- ADS/GLW: several narrow solutions
- GGSZ: single, wider solution
- Analysing different modes serves as a useful cross-check: results have different sources of systematic uncertainty, but should agree

14

JHEP 12(2021)141

γ Measurement of $B_s^0 \rightarrow D^{(*)}\phi$ decays

B_s result based on B_s→D_sK and D_sKππ with large uncertainty →Additional B_s will help improve the measurement precision

By using expected event yields for 5 D sub-modes (3 flavor and 2 CP), we have shown that a precision on γ of about 8~19° with LHCb full data set

→ Comparable to now combined B_s result: $\gamma = (79^{+21}_{-24})^o$

BESIII实验上粲强子、QCD及新物理研讨会2022

15

Chin. Phys. C 45 (2021) 2, 023003

Quantum correlated DD measurement

• $\psi(3770)$ is a spin -1 states, therefore the amplitude of $\psi(3770) \rightarrow D\overline{D}$:

 $(|D^0\rangle|\overline{D^0}\rangle - |\overline{D^0}\rangle|D^0\rangle)/\sqrt{2}$ [anti-symmetric wave function]

The amplitude for two D mesons to decay to states F and G is [D. Atwood and A. Soni, PRD68, 033003 (2003)]: $\Gamma(F|G) = \Gamma_0 \left[A_F^2 \bar{A}_G^2 + \bar{A}_F^2 A_G^2 - 2R_F R_G A_F \bar{A}_F A_G \bar{A}_G \cos[\delta_D^F - \delta_D^G] \right]$

The coherence factor R_F and the strong phase difference δ_D can be extracted

16

✓ Single tag (ST) samples:

decay products of only one D meson are reconstructed

- Double tag (DT) samples: decay products of both D mesons are reconstructed
- ✓ Some typical reconstructed D decay modes

Tag group	
Flavor	$K^+\pi^-, K^+\pi^-\pi^0, K^+\pi^-\pi^-\pi^+, K^+e^-\bar{\nu}_e$
CP-even	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, K^0_L\pi^0, \pi^+\pi^-\pi^0$
CP-odd	$K^{0}_{S}\pi^{0}, K^{0}_{S}\eta, K^{0}_{S}\omega, K^{0}_{S}\eta', K^{0}_{L}\pi^{0}\pi^{0}$
Mixed-CP	$K^0_S \pi^+\pi^-$

New BESIII strong phase inputs

- Measured using quantum-correlated DDbar meson pairs from Ψ(3770) decays
- Current CLEO inputs contribute ~3.9° uncertainty to γ

Model results 2010 CLEO results 2020 BESIII results

New BESIII results:

17

- On average, 2.5(2.0) X more precise for ci(si) than CLEO
- Expect associated uncertainty on γ to decrease by factor of 3

BESIII实验上粲强子、QCD及新物理研讨会2022

PRL124,241802(2020)

Other related measurements @ CLEO

BESIII intends to expand the programme performed at CLEO.

Improved BPGGSZ method

- Basic idea: Split events into bins
 - Make most use of amplitude info in phase space
- Observables
 - $p_D(z) = |A_D(z)|^2$, $\bar{p}_D(z) = |\bar{A}_D(z)|^2$ $z \equiv (m_+^2, m_-^2)$
 - $p_B(z) \propto \bar{p}_D(z) + r_B^2 p_D(z) + 2[x_C(z) + y_S(z)]$

 $C(\mathbf{z}) = \operatorname{Re}\left[A_D^*(\mathbf{z})\overline{A}_D(\mathbf{z})\right] \quad S(\mathbf{z}) = \operatorname{Im}\left[A_D^*(\mathbf{z})\overline{A}_D(\mathbf{z})\right]$

- Reform BPGGSZ method by $p(z) \rightarrow \int w(z)p(z)dz$
 - Binned BPGGSZ:

$$N_{i} = \int_{D} w_{i}(x)p_{B}(x)dx, \quad w_{i} = \begin{cases} 1, D_{i} \\ 0, \text{ otherwise} \end{cases}$$

• Change w_i to Fourier coefficients: Bin \rightarrow Point.

$$a_n^B = \int_D p_B(\phi) \cos(n\phi) \, d\phi$$

Eur. Phys. J. C, 2018, 78(2)

19

20

Analysis method

- Fourier coefficients:
 - $p^{\pm}(z) \to p^{\pm}(\phi) \to \frac{a_0^{\pm}}{2} + \sum_{n=1}^{M} [a_n^{\pm} \cos(n\phi) + b_n^{\pm} \sin(n\phi)]$
- Equations: $a_n^D = \frac{1}{\pi} \sum_{i=1}^{N_D} \cos(n\phi^i), \qquad b_n^D = \frac{1}{\pi} \sum_{i=1}^{N_D} \sin(n\phi^i).$
- $\bar{a}_n^{B\pm} = \bar{h}_B \{ a_n^{D\mp} + r_B^2 a_n^{D\pm} + 2[x_+ a_n^C \pm y_+ a_n^S] \}$ $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$
- $\bar{b}_n^{B\pm} = \bar{h}_B \{ -b_n^{D\mp} + r_B^2 b_n^{D\pm} \pm 2[x_+ b_n^C y_+ a_n^S] \}$ $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$
- $a_n^{B\pm} = h_B \{ a_n^{D\pm} + r_B^2 a_n^{D\mp} + 2[x_- a_n^C \mp y_- a_n^S] \}$
- $b_n^{B\pm} = h_B \{ b_n^{D\pm} r_B^2 b_n^{D\mp} \pm 2[x_- b_n^C + y_- b_n^S] \}$

B sector

- $a_n^{CP\pm} = h_{CP}[a_n^{D\pm} + a_n^{D\mp} 2\lambda_{CP}a_n^C]$
- $a_{mn}^{DD\pm\pm} = h_{DD}[a_m^{D\pm}a_n^{D\mp} + a_m^{D\mp}a_n^{D\pm} 2(a_m^C a_n^C \pm a_n^S a_m^S)]$ **D sector**

 m_{\pm}^2 (GeV²)

LHCb&BESIII joint analysis is ongoing

Future prospects for γ @ LHCb

BESIII实验上粲强子、QCD及新物理研讨会2022

[LHCb-PUB-2018-009]

21

22

- 10 years of measurements have been game changing for flavor physics
- γ no longer the least precisely known of the weak phases!
- Now precision of < 4°, many more modes still to add!</p>
- BESIII (STCF) will play important roles for the charm inputs

BESIII实验上粲强子、QCD及新物理研讨会2022

Thank you!

BESIII实验上粲强子、QCD及新物理研讨会2022

Toy study (LHCb+BESIII)

Model

- Signal $D \rightarrow K_s \pi \pi$: BELLE 2010 model
- Quantum-coherence Ddbar MC
- Signal & background yields: published paper
- Efficiency from signal MC

decay channel	signal yield	decay channel	signal yield
$B \rightarrow DK$	15k	$B \rightarrow D\pi$	221k
$K^0_{ m S}\pi\pi$ vs. quasi-flav.	23k	$K_{\rm L}^0\pi\pi$ vs. quasi-flav.	41k
$K^0_{ m S}\pi\pi$ vs. $CP+$	2.5k	$K_{\rm L}^0\pi\pi$ vs. $CP+$	5.0k
$K^0_{ m S}\pi\pi$ vs. $C\!P-$	1.7k	$K_{\rm L}^0\pi\pi$ vs. $CP-$	1.5k
$K^0_{ m S}\pi\pi$ vs. $K^0_{ m S}\pi\pi$	1.8k	$K_{ m L}^0\pi\pi$ vs. $K_{ m S}^0\pi\pi$	3.4k

24

Toy test

- Test the precision under 4 methods by 1000 toy MC samples
 - BPGGSZ method
 - Model-dependent method
 - Fourier method with expansion order M=3
 - Fourier+Legendre method with expansion order $M_F=2$, $M_L=2$
 - Expansion order is limited by statistics
 - Efficiency and background are not included
- Test the γ precision: (input $\gamma(75^\circ)$, $\delta_B^{DK}(130^\circ)$, $\delta_B^{D\pi}(300^\circ)$, $r_B^{DK}(0.09)$, $r_B^{D\pi}(0.005)$.)

Method	γ[°]	$\delta^{DK}_B[^\circ]$	$\delta^{D\pi}_B[^\circ]$	$r_B^{DK}[imes 10^{-2}]$	$r_B^{D\pi}[imes 10^{-3}]$
Unbinned MD	74.99 ± 3.77	130.02 ± 3.63	300 ± 17	8.96 ± 0.58	5.04 ± 1.52
Binned	74.95 ± 4.70	130.29 ± 5.59	300 ± 22	8.67 ± 0.76	4.91 ± 1.80
3 rd Fourier	75.15 ± 4.23	130.04 ± 4.52	300 ± 21	8.99 ± 0.70	5.01 ± 1.80
2+2 Fourier + Legendre	75.07 ± 3.88	129.99 ± 4.28	300 ± 18	8.91 ± 0.63	5.01 ± 1.57
3 rd Fourier (smear)	75.13 ± 4.23	130.45 ± 4.53	300 ± 21	8.98 ± 0.71	5.01 ± 1.80