BESIII实验上粲强子、QCD及新物理研讨会

Antitriplet Charmed Baryons Decays from the Pespective of Flavor Symmetry

Fanrong Xu (徐繁荣) Jinan University (暨南大学) August 23, 2022, Lanzhou University

Outline

- Introduction
- Framework for Fitting
- Results and discussion
- Summary

Introduction

Λ_c^+ : shed the light

2286.46 ± 0.14 MeV

 $(2.00 \pm 0.06) \times 10^{-13}$ s (S = 1.6)

Progress 1: experiments before 2022

• BESIII

- \succ absolute branching ratio of Λ⁺_c → $pK^-\pi^+$, 2016
- \triangleright observation of $\Lambda_c^+ \rightarrow n K_S^0 \pi^+$, 2017
- $ightarrow \Lambda_c^+
 ightarrow p\pi^0$ and $\Lambda_c^+
 ightarrow p\pi^0$, 2017
- \succ absolute branching fraction for Λ⁺_c → Ξ⁰K⁺, 2018
- \triangleright decay asymmetries in Λ_c → *PK*_S, Λπ⁺, Σ⁺π⁰, Σ⁰π⁺, 2019
- > absolute branching fraction of inclusive decay $\Lambda_c^+ \rightarrow K_S^0 X$, 2020
- ➤ absolute branching fraction for $\Lambda_c^+ \rightarrow pK_S^0 \eta$, 2021
 >...

• Bell

 $\begin{array}{l} & \blacktriangleright \text{Measurement of } \Xi_c^+ \to \Xi^- \pi^+ \pi^+, 2019 \\ & \triangleright \text{ measurement of } \Xi_c^0 \to \Xi^- \pi^+, 2019 \\ & \triangleright \text{ asymmetry of } \Xi_c^0 \to \Xi^- \pi^+, 2021 \\ & \triangleright \text{ Branchng fractions of } \Lambda_c^+ \to p\eta \text{ and } \Lambda_c^+ \to p\pi^0, 2021 \\ & \triangleright \dots \end{array}$

• LHCb

- \succ Branching fraction of Λ_c^+ → $p \pi^- K^+$, 2018
- ▶ Observation of Ξ_{cc}^{++} , 2017
- > Observation of Ξ_{cc}^{++} → $\Xi_{c}^{+}\pi^{+}$,2018
- → Observation of $\Xi_c^+ \rightarrow p\phi$, 2019
- > Precision measurement of Ξ_{cc}^{++} mass, 2020
- Search for Ξ_{cc}^+ , 2020, 2021
- Search for Ω_{cc}^+ , 2021

≻...

Progress 1: experiments since 2022

• BESIII

➢ First measurement

- Branching ratio:
 - $\Lambda_c^+ \to n \pi^+, \ \Lambda_c^+ \to p \eta', \ \Lambda_c^+ \to \Lambda^0 K^+, \ \Lambda_c^+ \to \Sigma^0 K^+$
- >Improvement
 - Branching ratio: $\Lambda_c^+ \to \Sigma^+ K_S$

• Belle

➢ First measurement

- Branching ratio: $\Lambda_c^+ \to p \eta'$, $\Lambda_c^+ \to \Lambda^0 K^+$, $\Lambda_c^+ \to \Sigma^0 K^+$
- Decay asymmetry: $\Lambda_c^+ \to \Lambda^0 K^+$, $\Lambda_c^+ \to \Sigma^0 K^+$, $\Lambda_c^+ \to \Sigma^+ \eta$, $\Lambda_c^+ \to \Sigma^+ \eta'$
- ➤Improvement
 - Branching ratio: $\Lambda_c^+ \rightarrow p \eta'$
 - Decay asymmetry: $\Lambda_c^+ \to \Lambda^0 \pi^+$, $\Lambda_c^+ \to \Sigma^0 \pi^+$, $\Lambda_c^+ \to \Sigma^+ \pi^0$

Observation of the Singly Cabibbo Suppressed Decay $\Lambda_c^+ o n\pi^+$					
M. Ablikim <i>et al.</i> (BESIII Collaboration) Phys. Rev. Lett. 128 , 142001 – Published 4 April 2022					
Measurement of Branching Fractions of Singly $\Lambda^+_r o \Sigma^0 K^+$ and $\Sigma^+ M$	Cabibbo-suppressed Decays				
L L	2207.10906 [hep-ex]				
Measurement of the Branching Fraction of the Sin $\Lambda_c^+ o \Lambda K^+$	gly Cabibbo-Suppressed Decay				
	2208.04001 [hep-ex]				
Measurement of the absolute branching fraction of the singly Cabibbo suppress decay $\Lambda_c^+ \to p\eta'$					
	2207.14461 [hep-ex]				

Measurement of branching fractions and deca and $\Lambda_c^+ \rightarrow \Sigma^0 h^+$ ($h = K, \pi$), and search f (The Belle Colla	ay asymmetry parameters for $\Lambda_c^+ \to \Lambda h^+$ for CP violation in baryon decays boration)
	2208.08695 [hep-ex]
J HEP	PUBLISHED FOR SISSA BY 2 SPRINGER REGENER: Docember 39, 2021 ACCEPTER: Fobrary 85, 2022 Demunger: Monch 11, 2022
First measuremen	t of the $\Lambda^+ \rightarrow m'$ decay

Progress 2: theory

- Pole model + current algebra + MIT bag model
- Rescattering
- NR quark model
- QCD sum rule
- ...
- Fit
 - SU(3) flavor symmetry
 - Diagrammatical approach

Framework for Fitting

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{2\sqrt{2}} V_{q_1c}^* V_{uq_2} (c_+ \mathcal{O}_+ + c_- \mathcal{O}_-) + h.c.$$

$$egin{aligned} \mathcal{O}_+ &= \mathcal{O}_1 + \mathcal{O}_2, & \mathcal{O}_- &= \mathcal{O}_1 - \mathcal{O}_2 \ \mathcal{O}_1 &= (ar q_1 c)(ar u q_2), & \mathcal{O}_2 &= (ar u c)(ar q_1 q_2) \end{aligned}$$

$$M = egin{pmatrix} M = egin{pmatrix} rac{1}{\sqrt{2}}(\pi^0 + c_\phi \eta + s_\phi \eta') & \pi^+ & K^+ \ \pi^- & rac{1}{\sqrt{2}}(-\pi^0 + c_\phi \eta + s_\phi \eta') & K^0 \ K^- & \overline{K}^0 & -s_\phi \eta + c_\phi \eta' \end{pmatrix} & m{B}_n = egin{pmatrix} rac{1}{\sqrt{6}}\Lambda + rac{1}{\sqrt{2}}\Sigma^0 & \Sigma^+ & p \ \Sigma^- & rac{1}{\sqrt{6}}\Lambda - rac{1}{\sqrt{2}}\Sigma^0 & n \ \Xi^- & \Xi^0 & -\sqrt{rac{2}{3}}\Lambda \end{pmatrix} \ \mathcal{M} = egin{pmatrix} \mathcal{M} = egin{pmatrix} M m{B}_n & |\mathcal{H}_{ ext{eff}}| m{B}_c \end{pmatrix} & m{B}_c = (\Xi_c^0, -\Xi_c^+, \Lambda_c^+) \end{aligned}$$

$$\mathcal{M}(\boldsymbol{B}_c \to \boldsymbol{B}_n M) = i \bar{u}_f (A - B \gamma_5) u_i$$

Л

 $a_i \rightarrow b_i$

 $\overline{3} \times \overline{3} \times 3 = \overline{3} + \overline{3} + \overline{6} + \overline{15}$ $H(6)_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & -2s_c \\ 0 & -2s_c & 2s_c^2 \end{pmatrix}$

 $A = a_0 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^j_k (M)^\ell_\ell + a_1 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^\ell_k (M)^j_\ell + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^\ell_k (\mathbf{B}_n)^j_\ell$ $+a_{3}H(6)_{ij}(\boldsymbol{B}_{n})_{k}^{i}(M)_{\ell}^{j}(\boldsymbol{B}_{c}^{\prime})^{k\ell}+a_{0}^{\prime}(\boldsymbol{B}_{n})_{j}^{i}(M)_{\ell}^{\ell}H(\overline{15})_{i}^{jk}(\boldsymbol{B}_{c})_{k}+a_{4}H(\overline{15})_{k}^{\ell i}(\boldsymbol{B}_{c})_{j}(M)_{i}^{j}(\boldsymbol{B}_{n})_{\ell}^{k}$ $+a_{5}(\boldsymbol{B}_{n})_{i}^{i}(M)_{i}^{\ell}H(\overline{15})_{\ell}^{jk}(\boldsymbol{B}_{c})_{k}+a_{6}(\boldsymbol{B}_{n})_{i}^{j}(M)_{\ell}^{m}H(\overline{15})_{m}^{\ell i}(\boldsymbol{B}_{c})_{j}+a_{7}(\boldsymbol{B}_{n})_{i}^{\ell}(M)_{j}^{i}H(\overline{15})_{\ell}^{jk}(\boldsymbol{B}_{c})_{k}$ B = A

$$H(\overline{15})_{k}^{ij} = \left(\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & s_{c} & 0 \\ s_{c} & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -s_{c}^{2} & -s_{c} \\ -s_{c}^{2} & 0 & 0 \\ -s_{c} & 0 & 0 \end{pmatrix} \right)$$

Amplitudes

channel	A	channel	Α
$\Lambda_c^+\to\Lambda^0\pi^+$	$rac{\sqrt{6}}{6}(-2a_1-2a_2-2a_3+a_5-2a_6+a_7)$	$\Xi_c^+ \to \Xi^0 \pi^+$	$-2a_3 - a_4 - a_6$
$\Lambda_c^+ \to p\overline{K}^0$	$-2a_1+a_5+a_6$	$\Xi_c^0 \to \Lambda^0 \overline{K}^0$	$\frac{\sqrt{6}}{6}(-4a_1+2a_2+2a_3-2a_5+a_6+a_7)$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$rac{\sqrt{2}}{2}(-2a_1+2a_2+2a_3+a_5-a_7)$	$\Xi_c^0 \to \Sigma^0 \overline{K}^0$	$rac{\sqrt{2}}{2}(-2a_2-2a_3+a_6-a_7)$
$\Lambda_c^+\to \Sigma^+\pi^0$	$rac{\sqrt{2}}{2}(2a_1-2a_2-2a_3-a_5+a_7)$	$\Xi_c^0 \to \Sigma^+ K^-$	$2a_2 + a_4 + a_7$
$\Lambda_c^+ \to \Sigma^+ \eta$	$rac{\sqrt{2}}{6}c_{\phi}(-12a_0-6a_1-6a_2+6a_3+6a_0'+3a_5+3a_7) \ +s_{\phi}(2a_0-a_0'-a_4)$	$\Xi_c^0 ightarrow \Xi^0 \pi^0$	$rac{\sqrt{2}}{2}(-2a_1+2a_3+a_4-a_5)$
$\Lambda_c^+ \to \Sigma^+ \eta'$	$rac{\sqrt{2}}{6}s_{\phi}(-12a_0-6a_1-6a_2+6a_3+6a_0'+3a_5+3a_7) \ -c_{\phi}(2a_0-a_0'-a_4)$	$\Xi_c^0 ightarrow \Xi^0 \eta$	$rac{\sqrt{2}}{6}c_{\phi}(12a_{0}+6a_{1}-6a_{3}+6a_{0}'+3a_{4}+3a_{5})\ +rac{1}{3}s_{\phi}(-6a_{0}-6a_{2}-3a_{0}'-3a_{7})$
$\Lambda_c^+ \to \Xi^0 K^+$	$-2a_2 + a_4 + a_7$	$\Xi_c^0\to \Xi^0\eta'$	$rac{\sqrt{2}}{6}s_{\phi}(12a_{0}+6a_{1}-6a_{3}+6a_{0}'+3a_{4}+3a_{5})\ -rac{1}{3}c_{\phi}(-6a_{0}-6a_{2}-3a_{0}'-3a_{7})$
$\Xi_c^+\to \Sigma^+ \overline{K}^0$	$2a_3 - a_4 - a_6$	$\Xi_c^0\to\Xi^-\pi^+$	$2a_1 + a_5 + a_6$
·		-	
channel	$s_c^{-2}A$	channel	$s_c^{-2}A$
$\Lambda_c^+ \to pK$	$2a_3 - a_4 - a_6$	$\Xi_c^+ \to \Sigma^+ K^0$	$-2a_1 + a_5 + a_6$
$\Lambda_c^+ \to nK$	$-2a_3 - a_4 - a_6$	$\Xi_c^0\to\Lambda K^0$	$\frac{\sqrt{6}}{6}(-2a_1+4a_2+4a_3-a_5-a_6+2a_7)$
$\Xi_c^+ \to \Lambda K$	$X^+ = \frac{\sqrt{6}}{6}(-2a_1 + 4a_2 + 4a_3 + a_5 + a_6 - 2a_7)$	$\Xi_c^0 \to p \pi^-$	$-2a_2 - a_4 - a_7$
$\Xi_c^+ \to p \pi^0$	$\frac{\sqrt{2}}{2}(-2a_2-a_4+a_7)$	$\Xi_c^0 \to n \pi^0$	$rac{\sqrt{2}}{2}(-2a_2-a_4+a_7)$
$\Xi_c^+ \to p\eta$	6		6
	$rac{\sqrt{2}}{2}c_{\phi}(-4a_0-2a_2+2a_0'+a_4+a_7) \ +s_{\phi}(2a_0+2a_1-2a_3-a_0'-a_5)$	$\Xi_c^0 \to n\eta$	$rac{ end 2}{2}c_{\phi}(-4a_0-2a_2-2a_0'-a_4-a_7) \ +s_{\phi}(2a_0+2a_1-2a_3+a_0'+a_5)$
$\Xi_c^+ \to p \eta'$	$\frac{\frac{\sqrt{2}}{2}c_{\phi}(-4a_{0}-2a_{2}+2a_{0}'+a_{4}+a_{7})}{+s_{\phi}(2a_{0}+2a_{1}-2a_{3}-a_{0}'-a_{5})}$ $\frac{\frac{\sqrt{2}}{2}s_{\phi}(-4a_{0}-2a_{2}+2a_{0}'+a_{4}+a_{7})}{-c_{\phi}(2a_{0}+2a_{1}-2a_{3}-a_{0}'-a_{5})}$	$\Xi_c^0 \to n\eta$ $\Xi_c^0 \to n\eta'$	$\frac{\frac{\sqrt{2}}{2}c_{\phi}(-4a_{0}-2a_{2}-2a_{0}'-a_{4}-a_{7})}{+s_{\phi}(2a_{0}+2a_{1}-2a_{3}+a_{0}'+a_{5})}$ $\frac{\frac{\sqrt{2}}{2}s_{\phi}(-4a_{0}-2a_{2}-2a_{0}'-a_{4}-a_{7})}{-c_{\phi}(2a_{0}+2a_{1}-2a_{3}+a_{0}'+a_{5})}$
$\Xi_c^+ \to p\eta'$ $\Xi_c^+ \to n\pi^-$	$ \begin{array}{c} \frac{\sqrt{2}}{2}c_{\phi}(-4a_{0}-2a_{2}+2a_{0}'+a_{4}+a_{7})\\ +s_{\phi}(2a_{0}+2a_{1}-2a_{3}-a_{0}'-a_{5})\\ \hline \frac{\sqrt{2}}{2}s_{\phi}(-4a_{0}-2a_{2}+2a_{0}'+a_{4}+a_{7})\\ -c_{\phi}(2a_{0}+2a_{1}-2a_{3}-a_{0}'-a_{5})\\ \end{array} \\ + \begin{array}{c} -2a_{2}+a_{4}+a_{7}\end{array} $	$\begin{split} \Xi_c^0 &\to n\eta \\ \\ \Xi_c^0 &\to n\eta' \\ \\ \Xi_c^0 &\to \Sigma^0 K^0 \end{split}$	$\frac{\frac{\sqrt{2}}{2}c_{\phi}(-4a_{0}-2a_{2}-2a_{0}'-a_{4}-a_{7})}{+s_{\phi}(2a_{0}+2a_{1}-2a_{3}+a_{0}'+a_{5})}$ $\frac{\frac{\sqrt{2}}{2}s_{\phi}(-4a_{0}-2a_{2}-2a_{0}'-a_{4}-a_{7})}{-c_{\phi}(2a_{0}+2a_{1}-2a_{3}+a_{0}'+a_{5})}$ $\frac{\frac{\sqrt{2}}{2}(2a_{1}+a_{5}-a_{6})}$

Amplitudes

channel	$s_c^{-1}A$	channel	$s_c^{-1}A$
$\Lambda_c^+ \to \Lambda K^+$	$\frac{\sqrt{6}}{6}(2a_1 - 4a_2 + 2a_3 + 3a_4 - a_5 + 2a_6 + 2a_7)$	$\Xi_c^+ \to \Xi^0 K^+$	$2a_2 + 2a_3 + a_6 - a_7$
$\Lambda_c^+ \to p \pi^0$	$\frac{\sqrt{2}}{2}(2a_2+2a_3-a_6-a_7)$	$\Xi_c^0\to\Lambda\pi^0$	$\frac{\sqrt{3}}{6}(-2a_1-2a_2+4a_3+3a_4-a_5-a_6-a_7)$
$\Lambda_c^+ \to p\eta$	$rac{\sqrt{2}}{2}c_{\phi}(4a_{0}+a_{2}-2a_{3}-2a_{0}'+a_{6}-a_{7})\ +s_{\phi}(-2a_{0}-2a_{1}+a_{0}'+a_{4}-a_{5}+a_{6})$	$\Xi_c^0\to\Lambda\eta$	$\frac{\sqrt{3}}{6}c_{\phi}(12a_{0}+2a_{1}+2a_{2}-4a_{3}+6a_{0}'+3a_{4}+a_{5}+a_{6}+a_{7}) + \frac{\sqrt{6}}{6}s_{\phi}(-6a_{0}-4a_{1}-4a_{2}+2a_{3}-3a_{0}'-2a_{5}+a_{6}-2a_{7})$
$\Lambda_c^+ \to p \eta'$	$rac{\sqrt{2}}{2}s_{\phi}(4a_{0}+a_{2}-2a_{3}-2a_{0}'+a_{6}-a_{7})\ -c_{\phi}(-2a_{0}-2a_{1}+a_{0}'+a_{4}-a_{5}+a_{6})$	$\Xi_c^0\to\Lambda\eta'$	$\frac{\sqrt{3}}{6}s_{\phi}(12a_0+2a_1+2a_2-4a_3+6a_0'+3a_4+a_5+a_6+a_7)\\-\frac{\sqrt{6}}{6}c_{\phi}(-6a_0-4a_1-4a_2+2a_3-3a_0'-2a_5+a_6-2a_7)$
$\Lambda_c^+ \to n\pi^+$	$2a_2 + 2a_3 + a_6 - a_7$	$\Xi_c^0 \to p K^-$	$-2a_2 - a_4 - a_7$
$\Lambda_c^+ \to \Sigma^0 K^+$	$rac{\sqrt{2}}{2}(2a_1-2a_3-a_4-a_5)$	$\Xi_c^0 \to n K^0$	0
$\Lambda_c^+ \to \Sigma^+ K^0$	$2a_1 - 2a_3 + a_4 - a_5$	$\Xi_c^0 \to n \overline{K}^0$	$2a_1 - 2a_2 - 2a_3 + a_5 - a_7$
$\Lambda_c^+\to \Sigma^+ \overline{K}{}^0$	0	$\Xi_c^0 \to n K_S^0$	$-(2a_1-2a_2-2a_3+a_5-a_7)/\sqrt{2}$
$\Lambda_c^+ \to \Sigma^+ K^0_S$	$(2a_1 - 2a_3 + a_4 - a_5)/\sqrt{2}$	$\Xi_c^0 \to n K_L^0$	$(2a_1-2a_2-2a_3+a_5-a_7)/\sqrt{2}$
$\Lambda_c^+ \to \Sigma^+ K_L^0$	$(2a_1 - 2a_3 + a_4 - a_5)/\sqrt{2}$	$\Xi_c^0\to \Sigma^0\pi^0$	$rac{1}{2}(2a_1+2a_2-a_4+a_5-a_6+a_7)$
$\Xi_c^+ \to \Lambda^0 \pi^+$	$\frac{\sqrt{6}}{6}(2a_1+2a_2-4a_3-3a_4-a_5-a_6-a_7)$	$\Xi_c^0\to \Sigma^0\eta$	$\frac{\frac{1}{2}c_{\phi}(-4a_{0}-2a_{1}-2a_{2}-2a_{0}'-a_{4}-a_{5}+a_{6}-a_{7})}{+\frac{\sqrt{2}}{2}s_{\phi}(2a_{0}-2a_{3}+a_{0}'+a_{6})}$
$\Xi_c^+ \to p K^0$	0	$\Xi_c^0\to \Sigma^0\eta'$	$\frac{\frac{1}{2}s_{\phi}(-4a_0-2a_1-2a_2-2a_0'-a_4-a_5+a_6-a_7)}{-\frac{\sqrt{2}}{2}c_{\phi}(2a_0-2a_3+a_0'+a_6)}$
$\Xi_c^+ \to p \overline{K}^0$	$2a_1 - 2a_3 + a_5 - a_5$	$\Xi_c^0\to \Sigma^+\pi^-$	$2a_2 + a_4 + a_7$
$\Xi_c^+ \to p K_S^0$	$-(2a_1-2a_3+a_4-a_5)/\sqrt{2}$	$\Xi_c^0 \to \Sigma^- \pi^+$	$2a_1+a_5+a_6$
$\Xi_c^+ \to p K_L^0$	$(2a_1-2a_3+a_4-a_5)/\sqrt{2}$	$\Xi_c^0\to \Xi^0 K^0$	$-2a_1+2a_2+2a_3-a_5+a_7$
$\Xi_c^+\to \Sigma^0\pi^+$	$\frac{\sqrt{2}}{2}(2a_1-2a_2+a_4-a_5+a_6+a_7)$	$\Xi_c^0\to \Xi^0 \overline{K}^0$	0
$\Xi_c^+\to \Sigma^+\pi^0$	$\frac{\sqrt{2}}{2}(-2a_1+2a_2-a_4+a_5+a_6-a_7)$	$\Xi_c^0\to \Xi^0 K^0_S$	$(-2a_1+2a_2+2a_3-a_5+a_7)/\sqrt{2}$
$\Xi_c^+\to \Sigma^+\eta$	$rac{\sqrt{2}}{2}c_{\phi}(4a_{0}+2a_{1}+2a_{2}-2a_{0}'-a_{4}-a_{5}-a_{6}-a_{7}) \ +s_{\phi}(-2a_{0}+2a_{3}+a_{0}'-a_{6})$	$\Xi_c^0 \to \Xi^0 K_L^0$	$(-2a_1+2a_2+2a_3-a_5+a_7)/\sqrt{2}$
$\Xi_c^+\to \Sigma^+\eta'$	$\frac{\sqrt{2}}{2}s_{\phi}(4a_0+2a_1+2a_2-2a_0'-a_4-a_5-a_6-a_7)\\-c_{\phi}(-2a_0+2a_3+a_0'-a_6)$	$\Xi_c^0\to \Xi^- K^+$	$-2a_1 - a_5 - a_6$

Amplitudes connections

$$\begin{split} \mathcal{M}(\Lambda_c^+ \to \Sigma^0 \pi^+) &= -\mathcal{M}(\Lambda_c^+ \to \Sigma^+ \pi^0) \\ \mathcal{M}(\Lambda_c^+ \Sigma^+ K^0) &= \mathcal{M}(\Xi_c^+ \to p\overline{K}^0 \\ \mathcal{M}(\Lambda_c^+ \to \pi^+) &= \mathcal{M}(\Xi_c^+ \to \Xi^0 K^0) \\ \mathcal{M}(\Xi_c^0 \to n\overline{K}^0) &= -\mathcal{M}(\Xi_c^0 \to \Xi^0 K^0) \\ \mathcal{M}(\Lambda_c^+ \to nK^+) &= \sin^2 \theta \mathcal{M}(\Xi_c^+ \to \Xi^0 \pi^+) \\ \mathcal{M}(\Xi_c^+ \to n\pi^+) &= \sin^2 \theta \mathcal{M}(\Xi_c^+ \to \Xi^0 \pi^+) \\ \mathcal{M}(\Xi_c^+ \to \Sigma^+ K^0) &= \sin^2 \theta \mathcal{M}(\Lambda_c^+ \to p\overline{K}^0) \\ \mathcal{M}(\Xi_c^- \to \Sigma^+ \overline{K}^0) &= -\frac{1}{\sin^2 \theta} \mathcal{M}(\Lambda_c^+ \to pK^0) \\ \mathcal{M}(\Xi_c^0 \to \Sigma^- K^+) &= -\sin^2 \theta \mathcal{M}(\Lambda_c^+ \to p\overline{K}^0) \\ &= \sin \theta \mathcal{M}(\Xi_c^0 \to \Sigma^- \pi^+) \\ \mathcal{M}(\Xi_c^0 \to p\pi^-) &= \sin \theta \mathcal{M}(\Xi_c^0 \to pK^-) \\ &= -\sin \theta \mathcal{M}(\Xi_c^0 \to \Sigma^+ \pi^-) \\ &= -\sin^2 \theta \mathcal{M}(\Xi_c^0 \to \Sigma^+ K^-) \\ \end{split}$$

Fitting scheme

$$\chi^2 = \sum_i \frac{(\mathcal{B}_i^{\mathrm{th}} - \mathcal{B}_i^{\mathrm{exp}})^2}{\delta_i^2} + \sum_i \frac{(\alpha_i^{\mathrm{th}} - \alpha_i^{\mathrm{exp}})^2}{\sigma_i^2}$$

• branching fractions (20):

$$\begin{split} \Lambda_c^+ &\to \Lambda \pi^+, p K_S^0, \Sigma^0 \pi^+, \Sigma^+ \pi^0, \Sigma^+ \eta, \Sigma^+ \eta', \Xi^0 K^+, p \eta, p \eta', p \pi^0, \Lambda K^+, \Sigma^0 K^+, n \pi^+, \Sigma^+ K_S^0, \\ \Xi_c^0 &\to \Xi^- \pi^+, \Xi^- K^+, \Lambda K_S^0, \Sigma^0 K_S^0, \Sigma^+ K^-, \\ \Xi_c^+ &\to \Xi^0 \pi^+ \end{split}$$

- decay asymmetries (4):
 - $\begin{array}{l} \Lambda_c \rightarrow \Lambda \pi^+, \Sigma^0 \pi^+, \Sigma^+ \pi^0 \\ \Xi_c^0 \rightarrow \Xi^- \pi^+ \end{array}$

Results

Coefficients of irreducible rep.

	Th	nis fit			Alternat	tive fit		$\alpha(\Lambda^+ \rightarrow \pi V^0)$
parameters	values	parameters	values	parameters	values	parameters	values	$\longleftarrow Witout B(\Lambda_c^+)$
a_0	$8.31\substack{+0.56 \\ -0.77}$	b_0	$40.44\substack{+2.32\\-8.88}$	a_0	$11.59\substack{+0.53 \\ -0.69}$	b_0	$9.34\substack{+2.61 \\ -9.60}$	$\chi^2_{-} = 10.24 \ ndf$
a_1	$-2.80\substack{+0.19\\-0.20}$	b_1	$8.92\substack{+0.92 \\ -0.97}$	a_1	-3.24 ± 0.22	b_1	$7.24\substack{+0.80 \\ -0.85}$	$\chi_{\min} = 10.21, may$
a_2	$1.06\substack{+0.23 \\ -0.25}$	b_2	$1.57\substack{+0.85 \\ -0.82}$	a_2	$-0.26\substack{+0.25\\-0.26}$	b_2	$-2.28\substack{+0.81\\-0.76}$	
a_3	$-0.98\substack{+0.27 \\ -0.28}$	b_3	-0.28 ± 1.04	a_3	$-1.29\substack{+0.38\\-0.37}$	b_3	$-1.44\substack{+0.90\\-0.84}$	
a_0'	$10.84\substack{+1.55\\-1.11}$	b_0'	$84.79\substack{+17.72 \\ -4.66}$	a_0'	$14.70^{+1.38}_{-1.05}$	b_0'	$14.33\substack{+19.20 \\ -5.23}$	If all obcomable
a_4	$-1.03\substack{+0.60\\-0.56}$	b_4	$-2.85\substack{+2.92\\-2.24}$	a_4	$-0.38\substack{+0.57\\-0.65}$	b_4	$0.80\substack{+2.12\\-2.47}$	
a_5	$2.79\substack{+0.38 \\ -0.40}$	b_5	$-1.82^{+1.93}_{-1.85}$	a_5	$2.94\substack{+0.43 \\ -0.46}$	b_5	$-0.36\substack{+1.69\\-1.61}$	$\chi^2_{\rm min} = 30.83, \chi$
a_6	$0.51\substack{+0.41 \\ -0.44}$	b_6	$5.16^{+1.47}_{-1.52}$	a_6	$1.03\substack{+0.39 \\ -0.40}$	b_6	$8.67\substack{+1.91 \\ -1.96}$	
a_7	$0.09\substack{+0.41 \\ -0.46}$	b_7	$-7.94^{+1.77}_{-1.58}$	a_7	$3.69\substack{+0.49\\-0.54}$	b_7	$5.05\substack{+1.53 \\ -1.61}$	

$$\alpha(\Lambda_{c}^{+} \rightarrow pK_{S}^{0}),$$
Witout $B(\Lambda_{c}^{+} \rightarrow p\pi^{0}),$

$$\chi_{\min}^{2} = 10.24, ndf = 7, \chi_{\min}^{2}/ndf = 1.46$$

If all observables included:
$$\chi^2_{
m min}=30.83, \chi^2_{
m min}/ndf=2.06$$

$$\chi^2_{\rm min} = 5.66, \chi^2_{\rm min}/ndf = 0.81$$
 with $ndf = 7$

$\Lambda_{\mathcal{C}}^{+}$ decay

channel	channel $A(10^{-1}G_F)$		$10^2 \mathcal{B}$	α
$\Lambda_c^+ \to \Lambda \pi^+ \qquad 0.30^{+0.06}_{-0.06}$		-1.65 ± 0.21 1.30 ± 0.23		$-0.84^{+0.10}_{-0.11}$
$\Lambda_c^+ \to p\overline{K}^0$	$\Lambda_c^+ \to p \overline{K}^0 \qquad 0.89 \pm 0.07$		$3.15\substack{+0.51 \\ -0.53}$	$-0.91\substack{+0.08\\-0.09}$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	0.60 ± 0.07	$-0.64\substack{+0.30 \\ -0.29}$	1.26 ± 0.30	$-0.61\substack{+0.23\\-0.22}$
$\Lambda_c^+ \to \Sigma^+ \pi^0$	-0.60 ± 0.07	$0.65\substack{+0.30 \\ -0.29}$	1.27 ± 0.30	$-0.61\substack{+0.23\\-0.22}$
$\Lambda_c^+ \to \Sigma^+ \eta$	0.04 ± 0.11	-1.35 ± 0.89	$0.38\substack{+0.50 \\ -0.49}$	-0.21 ± 0.59
$\Lambda_c^+ \to \Sigma^+ \eta'$	$-0.84\substack{+0.33\\-0.32}$	$-0.97\substack{+3.07 \\ -3.08}$	$1.03\substack{+0.80 \\ -0.79}$	0.35 ± 1.06
$ \Lambda_c^+ \to \Xi^0 K^+$	-0.31 ± 0.09	$-1.39\substack{+0.38\\-0.32}$	$0.53\substack{+0.21 \\ -0.19}$	$0.998\substack{+0.026\\-0.024}$
$\Lambda_c^+ \to \Lambda K^+$	-0.15 ± 0.02	$-0.01\substack{+0.10 \\ -0.09}$	$0.064\substack{+0.020\\-0.019}$	$0.05\substack{+0.42\\-0.36}$
channal	$A(10^{-1}C_{-})$	$R(10^{-1}C_{-1})$	$10^{2}B$	0
channel	$\frac{A(10 GF')}{10.015}$	D(10 GF)		μ
$\Lambda_c^+ o p \pi^0$	$-0.007\substack{+0.015\\-0.016}$	$0.085\substack{+0.056\\-0.055}$	$0.0041^{+0.0052}_{-0.0051}$	$-0.38\substack{+0.79\\-0.82}$
$\Lambda_c^+ \to p\eta$	0.23 ± 0.03	$-0.08\substack{+0.21\-0.20}$	0.14 ± 0.04	-0.27 ± 0.66
$\Lambda_c^+ o p\eta'$	0.13 ± 0.07	0.32 ± 0.69	0.049 ± 0.089	0.97 ± 0.48
$\Lambda_c^+ \to n\pi^+$	$0.013\substack{+0.021\\-0.022}$	0.35 ± 0.08	$0.067\substack{+0.030\\-0.029}$	$0.18\substack{+0.29 \\ -0.30}$
$\Lambda_c^+ \to \Sigma^0 K^+$	-0.086 ± 0.015	$0.37\substack{+0.07 \\ -0.06}$	$0.052\substack{+0.014\\-0.013}$	-0.98 ± 0.05
$\Lambda_c^+ \to \Sigma^+ K^0$	-0.17 ± 0.02	$0.39\substack{+0.10\\-0.09}$	0.11 ± 0.03	-0.92 ± 0.10
$\Lambda_c^+ o p K^0$	-0.0073 ± 0.0046	$-0.014\substack{+0.020\\-0.017}$	$(2.40^{+3.10}_{-2.87})10^{-4}$	$0.97\substack{+0.35\\-0.31}$
$\Lambda_c^+ \to nK^+$	0.013 ± 0.005	$-0.0088\substack{+0.0195\\-0.0172}$	$(4.76^{+3.56}_{-3.49})10^{-4}$	$-0.52\substack{+0.99\\-0.88}$

 Ξ_c^0 decay

channel	$A(10^{-1}G_F)$	$B(10^{-1}G_F)$	$10^2 \mathcal{B}$	α	channel	$A(10^{-1}G_F)$	$B(10^{-1}G_F)$	$10^2 \mathcal{B}$	α
$\Xi_c^0 o \Lambda \overline{K}^0$	0.26 ± 0.06	-1.32 ± 0.26	0.67 ± 0.22	$-0.85\substack{+0.13\\-0.14}$	$\Xi_c^0 \to \Sigma^0 \eta$	-0.16 ± 0.02	-1.18 ± 0.14	0.38 ± 0.08	0.71 ± 0.09
$\Xi_c^0\to \Sigma^0 \overline{K}^0$	$0.018\substack{+0.067\\-0.070}$	$-0.74\substack{+0.25\\-0.24}$	0.14 ± 0.09	$0.15\substack{+0.55 \\ -0.57}$	$\Xi_c^0 ightarrow \Sigma^0 \eta'$	-0.74 ± 0.05	-4.48 ± 0.49	2.66 ± 0.41	0.94 ± 0.04
$\Xi_c^0\to \Sigma^+ K^-$	0.12 ± 0.09	$-0.77\substack{+0.38\\-0.32}$	$0.18\substack{+0.15 \\ -0.13}$	$-0.77\substack{+0.45\\-0.42}$	$\Xi_c^0 \to \Sigma^+ \pi^-$	0.026 ± 0.020	$-0.17\substack{+0.09\\-0.07}$	$0.011\substack{+0.10 \\ -0.008}$	$-0.74_{-0.43}^{+0.45}$
$\Xi_c^0\to \Xi^0\pi^0$	-0.013 ± 0.069	-1.32 ± 0.26	$0.45\substack{+0.21\\-0.19}$	0.06 ± 0.33	$\Xi_c^0 \to \Sigma^- \pi^+$	$-0.052\substack{+0.015\\-0.016}$	0.48 ± 0.07	0.077 ± 0.021	$-0.57\substack{+0.15\\-0.16}$
$\Xi_c^0\to \Xi^0\eta$	1.02 ± 0.11	8.69 ± 0.89	$14.77\substack{+2.60\\-2.59}$	0.73 ± 0.07	$\Xi_c^0 \to \Xi^0 K^0$	0.069 ± 0.023	-0.48 ± 0.09	0.052 ± 0.017	$-0.81^{+0.18}_{-0.19}$
$\Xi_c^0\to \Xi^0\eta'$	$4.67\substack{+0.33 \\ -0.32}$	$27.90\substack{+3.07 \\ -3.08}$	61.07 ± 8.15	0.999 ± 0.007	$\Xi_c^0 \to \Xi^- K^+$	$0.052\substack{+0.015\\-0.016}$	-0.48 ± 0.07	0.46 ± 0.012	$-0.68\substack{+0.16\\-0.17}$
$\Xi_c^0\to \Xi^-\pi^+$	-0.23 ± 0.07	$2.12\substack{+0.30 \\ -0.31}$	$1.19\substack{+0.31\\-0.32}$	$-0.63^{+0.16}_{-0.17}$	$\Xi_c^0 ightarrow \Lambda K^0$	$0.0058\substack{+0.0038\\-0.0039}$	$-0.066\substack{+0.015\\-0.014}$	$(13.56^{+5.80}_{5.63})10^{-4}$	-0.47 ± 0.29
$\Xi_c^0 \to \Lambda \pi^0$	-0.045 ± 0.015	$-0.17\substack{+0.07\\-0.06}$	$0.016\substack{+0.009\\-0.008}$	$0.94\substack{+0.16 \\ -0.15}$	$\Xi_c^0 \to p\pi^-$	$-0.0059\substack{+0.0045\\-0.0044}$	$0.039\substack{+0.019\\-0.016}$	$(8.40^{+7.61}_{-6.41})10^{-4}$	$-0.62\substack{+0.44\\-0.41}$
$\Xi_c^0\to\Lambda\eta$	0.35 ± 0.03	2.04 ± 0.24	1.45 ± 0.28	0.79 ± 0.07	$\Xi_c^0 ightarrow n\pi^0$	0.012 ± 0.003	$-0.0070\substack{+0.0136\\-0.0114}$	$(3.60^{+2.09}_{-1.99})10^{-4}$	$-0.50\substack{+0.86\\-0.72}$
$\Xi_c^0\to\Lambda\eta'$	1.27 ± 0.09	$7.77\substack{+0.84 \\ -0.85}$	10.30 ± 1.7	0.87 ± 0.06	$\Xi_c^0 ightarrow n\eta$	-0.070 ± 0.006	$-0.31\substack{+0.05\\-0.04}$	0.051 ± 0.012	0.83 ± 0.08
$\Xi_c^0 \to p K^-$	-0.026 ± 0.020	$0.17\substack{+0.09 \\ -0.07}$	$0.014\substack{+0.013\\-0.011}$	$-0.64\substack{+0.45\\-0.42}$	$\Xi_c^0 ightarrow n\eta'$	-0.23 ± 0.02	$-1.44\substack{+0.15\\-0.16}$	0.58 ± 0.10	0.74 ± 0.06
$\Xi_c^0 o n \overline{K}^0$	-0.069 ± 0.023	0.48 ± 0.09	0.11 ± 0.04	$-0.60\substack{+0.18\\-0.19}$	$\Xi_c^0 \to \Sigma^0 K^0$	$-0.012\substack{+0.002\\-0.003}$	0.039 ± 0.011	$(6.99^{+2.47}_{-2.53})10^{-4}$	$-0.998\substack{+0.020\\-0.021}$
$\Xi_c^0\to \Sigma^0\pi^0$	$-0.00090\substack{+0.01260\\-0.01274}$	0.10 ± 0.05	$(0.31^{+0.34}_{-0.31})10^{-2}$	$-0.05\substack{+0.72\\-0.73}$	$ \exists_c^0 \to \Sigma^- K^+ $	$0.012\substack{+0.003\\-0.004}$	-0.11 ± 0.02	$(31.09^{+8.24}_{-8.36})10^{-4}$	$-0.60\substack{+0.16 \\ -0.17}$

Ξ_{c}^{+} decay

channel	$A(10^{-1}G_F)$	$B(10^{-1}G_F)$	$10^2 \mathcal{B}$	α
$\Xi_c^+ \to \Sigma^+ \overline{K}^0$	$\Xi_c^+ \to \Sigma^+ \overline{K}^0 \qquad -0.14 \pm 0.09$		$0.21\substack{+0.25 \\ -0.23}$	$0.91\substack{+0.56 \\ -0.50}$
$\Xi_c^+ \to \Xi^0 \pi^+$	0.25 ± 0.09	$-0.18\substack{+0.39\\-0.34}$	0.50 ± 0.36	$-0.41\substack{+0.84\\-0.74}$
$\Xi_c^+ \to \Lambda \pi^+$	$0.0013\substack{+0.0211\\-0.0206}$	$0.32\substack{+0.10 \\ -0.08}$	$0.11\substack{+0.07\\-0.06}$	$0.02\substack{+0.35\\-0.34}$
$\Xi_c^+ \to p\overline{K}^0$	-0.17 ± 0.02	$0.39\substack{+0.10 \\ -0.09}$	$0.39\substack{+0.11 \\ -0.10}$	-1.0 ± 0.0002
$\Xi_c^+ \to \Sigma^0 \pi^+$	-0.171 pm 0.02	$0.17\substack{+0.08\\-0.07}$	0.26 ± 0.05	$-0.62\substack{+0.22\\-0.20}$
$\Xi_c^+ \to \Sigma^+ \pi^0$	0.16 ± 0.02	$-0.10\substack{+0.08\\-0.07}$	0.20 ± 0.05	$-0.42\substack{+0.30\\-0.27}$
$\Xi_c^+ \to \Sigma^+ \eta$	$E_c^+ \to \Sigma^+ \eta \qquad -0.047 \pm 0.027$		0.051 ± 0.067	-0.91 ± 0.40
$\Xi_c^+ \to \Sigma^+ \eta'$	0.20 ± 0.07	0.24 ± 0.69	0.20 ± 0.16	$0.52^{+1.30}_{-1.31}$
channel	$A(10^{-1}G_F)$	$B(10^{-1}G_F)$	$10^2 \mathcal{B}$	α
$\Xi_c^+ \to \Xi^0 K^+$	$0.013\substack{+0.021\\-0.022}$	0.35 ± 0.08	$0.067\substack{+0.030\\-0.029}$	$0.26\substack{+0.42 \\ -0.43}$
$\Xi_c^+ \to \Lambda K^+$	0.019 ± 0.004	$0.013\substack{+0.015\\-0.014}$	$(2.59^{+1.05}_{-1.08})10^{-3}$	$0.48\substack{+0.47 \\ -0.45}$
$\Xi_c^+ o p \pi^0$	$-0.0036\substack{+0.0032\\-0.0031}$	$-0.029\substack{+0.014\\-0.011}$	$(1.39^{+1.21}_{-1.02})10^{-3}$	$0.51\substack{+0.44 \\ -0.42}$
$\Xi_c^+ \to p\eta$	-0.042 ± 0.006	0.035 ± 0.045	0.014 ± 0.005	-0.63 ± 0.63
$\Xi_c^+ \to p\eta'$	-0.030 ± 0.016	-0.077 ± 0.155	$(8.97^{+17.40}_{-17.42})10^{-3}$	0.997 ± 0.157
$\Xi_c^+ ightarrow n\pi^+$	$-0.015\substack{+0.005\\-0.004}$	$-0.070\substack{+0.019\\-0.016}$	$(9.17^{+4.18}_{-3.54})10^{-3}$	$0.79\substack{+0.19 \\ -0.18}$
$\Xi_c^+ \to \Sigma^0 K^+$	$0.028\substack{+0.002\\-0.003}$	-0.088 ± 0.011	0.011 ± 0.002	-1 ± 0.003
$\Xi_c^+ \to \Sigma^+ K^0$	$0.045\substack{+0.003\\-0.004}$	$-0.073\substack{+0.015\\-0.016}$	0.018 ± 0.003	$-0.83\substack{+0.10\\-0.11}$

Comparison: Branching fraction

	channel	This work	$\operatorname{GLT}[1]$	HXH[2]	ZWHY[3]	ZXMC[4]	exp. values
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)$	1.30 ± 0.28	1.30 ± 0.07	1.307 ± 0.069	1.32 ± 0.34	1.30	1.30 ± 0.07
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to pK_S^0)$	1.58 ± 0.27	1.57 ± 0.08	1.587 ± 0.077	1.57 ± 0.05	1.06	1.59 ± 0.08
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to \Sigma^0 \pi^+)$	1.27 ± 0.30	1.27 ± 0.06	1.272 ± 0.056	1.26 ± 0.32	2.24	1.29 ± 0.07
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)$	1.27 ± 0.30	1.27 ± 0.06	1.283 ± 0.057	1.23 ± 0.17	2.24	1.25 ± 0.10
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)$	$0.38\substack{+0.50\\-0.49}$	0.32 ± 0.13	0.45 ± 0.19	0.47 ± 0.22	0.74	0.44 ± 0.20
							$0.314 \pm 0.044 [5]$
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')$	$1.03\substack{+0.80\\-0.79}$	1.44 ± 0.56	1.5 ± 0.60	0.93 ± 0.28	1-	1.50 ± 0.60
							$0.416 \pm 0.085 [5]$
	$10^{-2}\mathcal{B}(\Lambda_c^+ \to \Xi^0 K^+)$	$0.53\substack{+0.21 \\ -0.19}$	0.56 ± 0.09	0.548 ± 0.068	0.59 ± 0.17	0.73	0.55 ± 0.07
1	$10^{-3} \mathcal{B}(\Lambda_c^+ o p\eta)$	1.45 ± 0.37	1.15 ± 0.27	1.27 ± 0.24	1.14 ± 0.35	1.28	1.42 ± 0.12
	$10^{-4}\mathcal{B}(\Lambda_c^+ \to p\eta')$	4.94 ± 8.93	24.5 ± 14.6	27 ± 38	7.1 ± 1.4	-	$4.73\pm0.97[\textbf{6}]$
							$5.62^{+2.46}_{-2.04}\pm 0.26[7]$
	$10^{-4}\mathcal{B}(\Lambda_c^+ \to \Lambda K^+)$	$6.44^{+1.95}_{-1.93}$	6.5 ± 1.0	6.4 ± 1.0	5.9 ± 1.7	10.7	$6.21 \pm 0.61 [8]$
							$6.57 \pm 0.40 [9]$
	$10^{-4}\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$	$5.03^{+1.37}_{-1.29}$	5.4 ± 0.7	5.04 ± 0.8	5.5 ± 1.6	7.2	$4.7 \pm 0.95 [10]$
							$3.58 \pm 0.28 [9]$
	$10^{-4}\mathcal{B}(\Lambda_c^+ \to n\pi^+)$	$6.74_{-2.94}^{+3.02}$	8.5 ± 2.0	3.5 ± 1.1	7.7 ± 2.0	-	$6.6\pm1.26[\textbf{11}]$
	$10^{-4}\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)$	$5.59^{+1.34}_{-1.29}$	5.45 ± 0.75	1.03 ± 0.42	9.55 ± 2.4	7.2	$4.8\pm1.4[\textbf{10}]$
	$10^{-4} \mathcal{B}(\Lambda_c^+ \to p \pi^0)$	$0.41\substack{+0.52\\-0.51}$	1.2 ± 1.2	44.5 ± 8.5	$0.8\substack{+0.9 \\ -0.8}$	1.26	< 2.7[12]
							< 0.80[13]
	$10^{-2}\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)$	$1.19\substack{+0.31 \\ -0.32}$	2.21 ± 0.14	1.21 ± 0.21	1.93 ± 0.28	6.47	1.43 ± 0.32
	$10^{-3}\mathcal{B}(\Xi_c^0\to\Xi^-K^+)$	0.46 ± 0.12	0.98 ± 0.06	0.47 ± 0.083	0.56 ± 0.08	3.90	0.38 ± 0.12
	$10^{-3}\mathcal{B}(\Xi_c^0 \to \Lambda K_S^0)$	3.37 ± 1.08	5.25 ± 0.3	3.34 ± 0.65	4.16 ± 2.51	6.65	3.34 ± 0.67
	$10^{-3} \mathcal{B}(\Xi_c^0 \to \Sigma^0 K_S^0)$	$0.69\substack{+0.46\\-0.45}$	0.4 ± 0.4	0.69 ± 0.24	3.96 ± 0.25	0.2	0.69 ± 0.24
	$10^{-3}\mathcal{B}(\Xi_c^0 \to \Sigma^+ K^-)$	$1.79^{+1.54}_{-1.32}$	5.9 ± 1.1	2.21 ± 0.68	22.0 ± 5.7	4.6	1.8 ± 0.4
	$10^{-2}\mathcal{B}(\Xi_c^+\to\Xi^0\pi^+)$	0.50 ± 0.36	0.38 ± 0.20	0.54 ± 0.18	0.93 ± 0.36	1.72	1.6 ± 0.8
		10.10					

Comparison: decay asymmetries

channel	This work	GLT[1]	HXH[2]	ZWHY[3]	$\operatorname{ZXMC}[4]$	exp. values
$\alpha(\Lambda_c^+ \to \Lambda \pi^+)$	$-0.82\substack{+0.10\\-0.11}$	-0.87 ± 0.10	-0.841 ± 0.083	-	-0.93	-0.84 ± 0.09
$\alpha(\Lambda_c^+ \to pK_S^0)$	$-0.91\substack{+0.08\\-0.09}$	$-0.89\substack{+0.26\\-0.11}$	0.19 ± 0.41	-	-0.75	0.18 ± 0.45
$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	$-0.61\substack{+0.23\\-0.22}$	-0.35 ± 0.27	-0.605 ± 0.088	-	-0.76	-0.73 ± 0.18
						-0.463 ± 0.018 [9]
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	$-0.61\substack{+0.23\\-0.22}$	-0.35 ± 0.27	-0.603 ± 0.088	-	-0.76	-0.55 ± 0.11
6. 						$-0.48 \pm 0.03[5]$
						$-0.755 \pm 0.006[9]$
$\alpha(\Xi_c^0\to\Xi^-\pi^+)$	$-0.64\substack{+0.16\\-0.17}$	$-0.98\substack{+0.07\\-0.02}$	-0.56 ± 0.32	-	-0.95	-0.64 ± 0.05
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta)$	-0.21 ± 0.59	-0.40 ± 0.47	0.3 ± 3.8	-	-0.95	$-0.99 \pm 0.06[5]$
$\alpha(\Lambda_c^+ \to \Sigma^+ \eta')$	0.35 ± 1.06	$1.00\substack{+0.00\\-0.17}$	0.8 ± 1.9	-		$-0.46 \pm 0.07 [5]$
$\alpha(\Lambda_c^+ \to \Lambda K^+)$	$0.05\substack{+0.42 \\ -0.36}$	0.32 ± 0.32	-0.24 ± 0.15	-	-0.96	-0.585 ± 0.052 [9]
$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$	-0.98 ± 0.05	$-1.00\substack{+0.06\\-0.00}$	-0.953 ± 0.040	-	-0.73	-0.55 ± 0.201 [9]
$\alpha(\Lambda_c^+ \to \Xi^0 K^+)$	$0.998\substack{+0.026\\-0.024}$	$0.94\substack{+0.06\\-0.11}$	0.866 ± 0.090		0.90	

Discussion 1

- Λ_c^+
 - Except $\Lambda_c^+ \to n K^+$, all the decays of Λ_c^+ have been measured .
 - Decay asymmetries of several modes need to be confirmed
- Ξ_c
 - There are still several channels yet to be measured, including CF modes: $\Xi_c^0 \to \Xi^0 \pi^0, \Xi^0 \eta, \Xi^0 \eta'$
 - Wish BESIII good luck after 2024!

Discussion 2

- Branching fractions
 - Consistent well: almost all the measured channels
 - Not consistnet: $\Xi_c^+ \to \Xi^0 \pi^+$
 - All the fitting results indicate a smaller value than Belle measured value.
- Decay asymmetries
 - 5 channels consistent well: $\Lambda_c^+ \to \Lambda \pi^+, \Sigma^0 \pi^+, \Sigma^+ \pi^0, \Sigma^0 K^+; \Xi_c^0 \to \Xi^- \pi^+$
 - 3 channels not consistent: $\Lambda_c^+ \rightarrow pK_S^0$, $\Sigma^+\eta'$, ΛK^+
 - $\Lambda_c^+ \rightarrow pK_S^0$, whether taking it as input or not, the prediction is negative, pole model calculation is negative, while BESIII gave positive sign.
 - $\Lambda_c^+ \to \Sigma^+ \eta'$ fit: positive; Belle: negative
 - $\Lambda_c^+ \rightarrow \Lambda K^+$ fit: <u>positive</u> or negative; pole model: negative; Belle: negative</u>
 - 1 channel unclear:
 - $\Lambda_c^+ \to \Xi^0 K^+$ fit: positive; pole model calculation: positive; BESIII:

Summary

- More data emerge during the summer of 2022.
- Fit at current stage:
 - Providing complementary information to model calculations and experiments;
 - Providing predictions for unmeasured modes;
 - Checking SU(3) symmetry in charmed baryon decays.
- A fit incorporating all current data does not work well.
- We find a fitting scheme by opting for most of the measured values.
- Ways to solvoe the inconsistent problems for several observables:
 - Experimental values will be changed with more precise measurement;
 - SU(3) symmetry breaking effect;
 - The improved theoretical calculations.