

BESIII实验上粲强子、QCD及新物理研讨会@兰州,2022.08.23

- **Fu-Sheng Yu** BESI Lanzhou University
- Based on J.P.Wang, FSY, arXiv:2208.01589

1.Introduction on baryon physics 2.Hyperon CP violation in charm decays 3.Baryon number violation decays of Λ_c 4.Summary

Baryon Physics

- The visible matter of the Universe is mainly made of baryons.
- understand the asymmetry between the matter and anti-matter in the Universe.
- Sakharov conditions for Baryogenesis:
 - 1) baryon number violation
 - 2) C and <u>CP violation</u>
 - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- Non-zero spin of baryons are helpful for CPV measurements

In the modern particle physics and cosmology, one of the most crucial problems is how to

CPV well established in K, B and D mesons, but CPV never established in any baryon

- •The strange mesons are the system to firstly observe the CP violation in 1964 and firstly establish the CPV in the decay amplitudes in 1999.
- It can be expected that the strange baryons are of good opportunity to observe the CPV in the baryon sector, since the light strange quarks are more easily produced.
- •CP violation in hyperon decays is estimated to be $\mathcal{O}(10^{-4} \sim 10^{-5})$

J.F.Donoghue, S.Pakvasa, PRL55,162(1985); J.H.Donoghue, X.G.He, S.Pakvasa, PRD34, 833 (1986)

•BESIII measured the most precise result via $e^+e^- \rightarrow J/\psi \rightarrow \Lambda\Lambda$:

 $A_{CP}^{\alpha} = (-2.5 \pm 4.6 \pm 1.1) \times 10^{-3}$

- Many other measurements at BESIII recently.
- •No more data expected at BESIII. Are there other methods to measure hyperon CPV?

Hyperon CP violation

No CPV observed BESIII, Nature Phys. 15, 631 (2019); 2204.11058

PHYSICAL REVIEW

VOLUME 104, NUMBER 1

Question of Parity Conservation in Weak Interactions*

T. D. LEE, Columbia University, New York, New York

AND

C. N. YANG, † Brookhaven National Laboratory, Upton, New York (Received June 22, 1956)

parity-odd quantity:

- $\vec{p} \cdot \vec{s} \propto \cos \theta$
- \vec{s} : nuclei spin
- \overrightarrow{p} : electron momentum

OCTOBER 1, 1956

β decay of oriented nucleus, Co-60

 $I(\theta)d\theta = (\text{constant})(1 + \alpha \cos\theta) \sin\theta d\theta$,

$$\alpha = 2 \left[\int_0^{\pi/2} I(\theta) d\theta - \int_{\pi/2}^{\pi} I(\theta) d\theta \right] / \int_0^{\pi} I(\theta) d\theta.$$

Polarization of initial states

$\Lambda^0 \rightarrow p\pi^-$: completely polarized hyperon

similar to the oriented Co-60, polarization in the initial state

 $\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha\cos\theta$

 α is the longitudinal polarization of the final-state baryon

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG

Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

$$\mathcal{A}(\Lambda^0 \to p\pi^-) = \bar{u}_p(S + P\gamma_5)v$$

$$\alpha = \frac{|h_{+}|^{2} - |h_{-}|^{2}}{|h_{+}|^{2} + |h_{-}|^{2}} = \frac{2\mathcal{R}e(SP^{*})}{|S|^{2} + |P|^{2}}$$

$$\Lambda_{A} = +\frac{1}{2}, \lambda_{p} = +\frac{1}{2} = \frac{1}{\sqrt{2}}(S+P), \qquad \longrightarrow 1+\alpha$$

$$\Lambda_{A} = -\frac{1}{2}, \lambda_{p} = -\frac{1}{2} = \frac{1}{\sqrt{2}}(S - P). \longrightarrow 1 - \alpha$$

α -induced CP violation

Definition of CPV observables: a_{CP} =

 α -induced CPV: $a_{CP}^{\alpha} = \frac{\langle \alpha \rangle - \langle (CP) \alpha \langle \alpha \rangle}{\langle \alpha \rangle + \langle (CP) \alpha \langle \alpha \rangle}$

• α is parity odd, $\hat{P}\alpha\hat{P}^{\dagger} = -\alpha$. $\bar{\alpha}$ is the charge conjugation, $\bar{\alpha} = \hat{C}\alpha\hat{C}^{\dagger}$.

• If CP is conserved, $\bar{\alpha} = -\alpha$.

 $|S_1| |S_2| \sin(\delta_{s,2} - \delta_{s,1})$ Direct CPV: α -induced CPV: $\propto \sum_{i,j=1,2} |S_i| |P_j| \sin(\delta_{p,j} - \delta_{s,i}) \sin(\phi_2 - \phi_1)$

$$= \frac{\langle O \rangle - \langle (CP)O(CP)^{\dagger} \rangle}{\langle O \rangle + \langle (CP)O(CP)^{\dagger} \rangle}$$

$$a_{CP}^{\text{dir}} = \frac{\Gamma(i \to f) - \bar{\Gamma}(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \bar{\Gamma}(\bar{i} \to \bar{f})}$$

$$\frac{(CP)^{\dagger}}{(CP)^{\dagger}} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$

$$S = |S_1|e^{i\delta_{s,1}}e^{i\phi_1} + |S_2|e^{i\delta_{s,2}}e^{i\phi_2}$$
$$P = |P_1|e^{i\delta_{p,1}}e^{i\phi_1} + |P_2|e^{i\delta_{p,2}}e^{i\phi_2} + |P_2|e^{i\phi_2}e^{i\phi_2} + |P_2|e^{i\phi_2} + |P_2|$$

$$\sin(\phi_2 - \phi_1) + (\mathsf{S} \leftrightarrow \mathsf{P})$$

different dependences on the strong phases

Hyperon produced from Λ_c^+ decays

In the chain decay of $\Lambda_c^+ \to \pi^+ \Lambda^0 (\to p \pi^-)$ $\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha_{\Lambda_c} \alpha_{\Lambda} \cos\theta$

$$\alpha_{\Lambda_c} = \alpha(\Lambda_c \to \Lambda \pi), \ \alpha_{\Lambda} = \alpha(\Lambda \to p\pi)$$

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + 1 \cdot \alpha_{\Lambda}\cos\theta$$

• It is clear in the BESIII measurement BESIII, PRD100,072004 (2019)

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha_{\Lambda_c} \alpha_{\Lambda} \cos\theta$$

CPV in the

Hyperon CPV from
$$\Lambda_c^+$$
 decays
 $\overline{s\theta} \propto 1 + \alpha_{\Lambda_c} \alpha_{\Lambda} \cos \theta$
chain decay of $\Lambda_c^+ \to \pi^+ \Lambda^0 (\to p\pi^-)$
 $A_{CP}^{\alpha}(\text{total}) = \frac{\alpha_{\Lambda_c} \cdot \alpha_{\Lambda} - \bar{\alpha}_{\Lambda_c} \cdot \bar{\alpha}_{\Lambda}}{\alpha_{\Lambda_c} \cdot \alpha_{\Lambda} + \bar{\alpha}_{\Lambda_c} \cdot \bar{\alpha}_{\Lambda}} = \frac{\alpha_{\Lambda} + \bar{\alpha}_{\Lambda}}{\alpha_{\Lambda} - \bar{\alpha}_{\Lambda}} = A_{CP}^{\alpha}(\Lambda^0 \to p\pi^-)$

•Since CP is conserved in the Cabibbo-favored (CF) charm decays, $\bar{\alpha}_{\Lambda_c} = - \alpha_{\Lambda_c}$

 $A^{\alpha}_{CP}(\text{total}) = A^{\alpha}_{CP}(\Lambda \to p\pi)$

Only the CPV of hyperon is in the chain decay of $\Lambda_c^+ \to \pi^+ \Lambda^0 (\to p \pi^-)$

J.P.Wang, FSY, arXiv:2208.01589

Much more processes of hyperons produced in Λ_c^+ decays

$\Lambda_c^+ \to \Lambda$	BR(%)
$\Lambda_c^+ \to \Lambda \pi^+$	1.30 ± 0.0
$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	7.1 ± 0.4
$\Lambda_c^+ \to \Lambda \pi^+ \eta$	1.84 ± 0.2
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	3.64 ± 0.29
$\Lambda_c^+ \to \Lambda \pi^+ \omega$	1.5 ± 0.5
$\Lambda_c^+ \to \Lambda e^+ \nu_e$	3.6 ± 0.4
$\Lambda_c^+ o \Lambda \mu^+ u_\mu$	3.5 ± 0.5

 $Br(\Lambda_c^+ \to \Lambda X) = (38.2^{+2.9}_{-2.4})\%$

All measured by BESIII

Higher precision if combining all the processes

Two-body decays

 $\frac{d\Gamma}{d\cos\theta} \propto 1 + \alpha_{\Lambda_c} \alpha_{\Lambda} \cos\theta$

Multi-body decays

Inclusive decays

 $q = p_{\Lambda_c} - p_{\Lambda}$

Averaged longitudinal polarization of Λ^0 from Λ^+_c decays J.P.Wang, FSY, arXiv:2208.01589 11

General formula for hyperon CPV from Λ_c^+ decays

- •Larger values of $\langle \alpha_{\Lambda}^{i}(q^{2}) \rangle$ are better to measure the hyperon CPV ==> BESIII.
- •The CP violation in hyperon decays can be measured by Belle II and LHCb.
- • $\Lambda_c^+ \to \Lambda^0 \pi^+$, $\Lambda^0 \to p \pi^-$ was very recently measured at Belle [Belle, 2208.08695], $A^{\alpha}_{CP}(\Lambda \rightarrow p\pi) = (+13 \pm 7 \pm 11) \times 10^{-1}$
- It is probably to reach the SM prediction of hyperon CPV at the order of 10^{-4} .
- •LHCb has larger production of Λ_c^+ . Current LHCb data might provide the most precise measurement on hyperon CPV.

³ v.s. BESIII:
$$A_{CP}^{\alpha} = (-2.5 \pm 4.6 \pm 1.1) \times 10^{3}$$

•Prospect: combination of all Λ^0 involved modes ($\times 10$), and $50ab^{-1}$ at Belle II ($\times 100$).

Baryon number violations: dark baryons

•Neutron lifetime puzzle:

$$\tau_n^{\text{bottle}} = 879.6 \pm 0.6 \text{ s} \quad \langle \tau_n^{\text{beam}} =$$

1% of neutron dark decays ! Fortal, Grinstein, PRL120,91801 (2018)

 $= 888.0 \pm 2.0 \text{ s}$

Baryon number violations: dark baryons

• Baryogenesis and dark matter: B-mesogenesis Elor, Escudero, Nelson, 1810.00880

•Neutron lifetime puzzle: 1% of neutron dark decays ! Fortal, Grinstein, PRL120,91801 (2018)

EFT: $\mathcal{O} = udb\psi$

3rd generation

EFT:
$$\mathcal{O} = u d d \psi$$

1st generation

Lambda invisible decays

- all the Standard Model quarks.
- •BESIII as a tau-charm factory can measure the interactions with the 2nd generation.
- Λ invisible decay: EFT: $\mathcal{O} = u ds \psi$

•BESIII measurement: BR($\Lambda \rightarrow$ invisible) < 7.4 $\times 10^{-5}$

•From the theoretical perspective, it is expected that the baryonic dark sectors interact with

BESIII, PRD105, L071102 (2022) See Dayong's and Yang's talk

Invisible decays

 More processes of hyperon decays:

- More processes of charmed hadron decays:
 - $\Lambda_c^+ \to K^+ + \text{invisible}$ $\Lambda_c^+ \to \pi^+ + \text{invisible}$ $D^0 \to \overline{\Lambda}^0 + \text{invisible}$

Alonso-Alvarez, et al, 2111.12712

ys: EFT: $\mathcal{O} = cds\psi$

Summary

- We propose to search for hyperon CPV in the Cabibbofavored charmed baryon decays, which is probably accessible to reach the SM prediction.
- Invisible hyperon decays and invisible charmed hadron decays are suggested to search for new physics.

Thank you!

Backups

Introduction

- Discrete symmetries and their violation play significant roles in elementary particle physics -Charge conjugate, Parity, Time reversal (C, P, T)
- •CP violation (CPV) has been well established in K, B and D mesons, but never in baryons until now
 - -CPV is one of the key conditions for matter-antimatter asymmetry in the Universe
 - The visible universe is mostly made of baryons
 - -Searching for baryon CPV is one of key problems in flavor physics
- In history, the parity non-conversation in weak decays was proposed by Lee and Yang
 - It was manifested by the beta decay of Co-60 by Wu
 - The decay asymmetry parameters were proposed by Lee and Yang very soon later

PHYSICAL REVIEW

VOLUME 104, NUMBER 1

OCTOBER 1, 1956

Question of Parity Conservation in Weak Interactions*

T. D. LEE, Columbia University, New York, New York

AND

C. N. YANG, † Brookhaven National Laboratory, Upton, New York (Received June 22, 1956)

PHYSICAL REVIEW

VOLUME 106, NUMBER 2

Remarks on Possible Noninvariance under Time Reversal and Charge Conjugation*

T. D. LEE, Columbia University, New York, New York

AND

REINHARD OEHME AND C. N. YANG, Institute for Advanced Study, Princeton, New Jersey (Received January 7, 1957)

Introduction

Possible Detection of Parity Nonconservation in Hyperon Decay*

T. D. LEE, J. STEINBERGER, Columbia University, New York, New York

AND

G. FEINBERG, P. K. KABIR, AND C. N. YANG, Institute for Advanced Study, Princeton, New Jersey (Received May 2, 1957)

APRIL 15, 1957

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG

Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

Parity transformation

Polarization in the final-state proton

z-direction: longitudinal polarization

y-direction: normal polarization of

x-direction: transverse polarization

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG

Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

$$P_p = \frac{(\alpha + \cos \theta)\hat{p} + \beta\hat{p} \times \hat{s} + \gamma(\hat{p} \times \hat{s}) \times \hat{s}}{1 + \alpha \cos \theta}$$

n of proton,
$$\alpha = \frac{2Re(S^*P)}{|S|^2 + |P|^2}$$
proton,
$$\beta = \frac{2Im(S^*P)}{|S|^2 + |P|^2}$$
of proton,
$$\gamma = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

$\Lambda^0 \rightarrow p\pi^-$: completely polarized hyperon

$\alpha = \frac{2Re(S^*P)}{|S|^2 + |P|^2}, \ \beta = \frac{2Im(S^*P)}{|S|^2 + |P|^2}$

- • α, β, γ are not independent: $\alpha^2 + \beta^2 + \gamma^2 = 1$
- •There are three free parameters in the amplitude, |S|, |P|, δ_{SP}
- dynamics. All the above arguments are the same as charmed baryon decays.

General Partial Wave Analysis of the Decay of a Hyperon of Spin $\frac{1}{2}$

T. D. LEE* AND C. N. YANG

Institute for Advanced Study, Princeton, New Jersey (Received October 22, 1957)

$$\frac{1}{2}, \ \gamma = \frac{|S|^2 - |P|^2}{|S|^2 + |P|^2}$$

•Together with the decay width, $\Gamma \propto |S|^2 + |P|^2$, there are three independent observables

In case of CP conserving, all the three observables are required to understand the decay

Hyperon polarizati

$$P_B(q^2) = \frac{d\Gamma^{\lambda_2 = 1/2}/dq^2 - d\Gamma^{\lambda_2 = -1/2}/dq^2}{d\Gamma/dq^2}$$

 $\langle P(q^2) \rangle = -0.86 \pm 0.04$

ion in
$$\Lambda_c^+ \to \Lambda^0 \ell^- \nu_\ell$$

Purely left-handed weak interaction

 $\alpha(\Lambda_c \to \Lambda \pi) = -0.84 \pm 0.09$ **BESIII 2019 CLEO 2005**

Similar in factorizable decays like $\Lambda_c^+ \to \Lambda^0 \pi^+ \pi^0$

General formula for hyperon CPV from Λ_c^+ decays

Two-body decays like $\Lambda_c^+ \to \Lambda^0 \pi^+$

Multi-body decays like $\Lambda_c^+ \to \Lambda^0 \pi^+ \pi^0$

Longitudinal polarization of Λ^0 from Λ^+_c decays

Dynamical calculation is difficult for multi-body decays

Intermediate states are required for dynamical calculations

 No matter how large it is, there must be such a polarization in the weak decays violating the parity

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + P \,\alpha_{\Lambda}\cos\theta$$

- •In general, this polarization is q^2 dependent, $P(q^2)$. Reasonable for intermediate resonant states
- If we only measure the distribution of $\cos \theta$ which is defined by $\Lambda^0 \to p\pi$ but un-related to Λ_c^+ decays, the polarization can be averaged

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \langle P(q^2) \rangle \alpha_{\Lambda} \cos\theta$$

Then CPV in the Cabibbo-favored Λ_c^+ decays is the same as two-body decays

General formula for hyperon CPV from Λ_c^+ decays

θ

 $A^{\alpha}_{CP}(\text{total}) = A^{\alpha}_{CP}(\Lambda \to p\pi)$

$$A^{\alpha}_{CP}(\text{total}) = \frac{\alpha_{\Lambda_c} \cdot \alpha_{\Lambda} - \bar{\alpha}_{\Lambda_c} \cdot \bar{\alpha}_{\Lambda}}{\alpha_{\Lambda_c} \cdot \alpha_{\Lambda} + \bar{\alpha}_{\Lambda_c} \cdot \bar{\alpha}_{\Lambda}}$$

 $\cdot \alpha_{\Lambda_c}$ or $\langle P(q^2) \rangle$ is cancelled in the above equations •But a larger value of $lpha_{\Lambda_c}$ is better for measurement

$$\begin{split} \Delta A^{\alpha}_{CP} &= \sqrt{\left(\frac{2\bar{\alpha}_{\Lambda_c}\bar{\alpha}_{\Lambda}\alpha_{\Lambda}}{(\alpha_{\Lambda_c}\alpha_{\Lambda} + \bar{\alpha}_{\Lambda_c}\bar{\alpha}_{\Lambda})^2}\Delta\alpha_{\Lambda_c}\right)^2 + (\alpha_{\Lambda_c}\leftrightarrow\bar{\alpha}_{\Lambda_c})} \\ &= \sqrt{\left(\frac{2}{\alpha_{\Lambda_c}}\Delta\alpha_{\Lambda_c}\right)^2 + (\alpha_{\Lambda_c}\leftrightarrow\bar{\alpha}_{\Lambda_c})} \end{split}$$

$$= A^{\alpha}_{CP}(\Lambda \to p\pi)$$

 $\bar{\alpha}_{\Lambda_c} = -\alpha_{\Lambda_c}, \bar{\alpha}_{\Lambda} \approx -\alpha_{\Lambda}$

Inclusive decays have large branching fractions

$$Br(\Lambda_c^+ \to \Lambda X) = (38.2^+)$$

•The formulas are similar to multi-body decays

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \langle P(q^2) \rangle \alpha$$

It can be used to measure CPV

Inclusive decays in $\Lambda_c^+ \to \Lambda^0 X$

- $(+2.9)_{-24})\%$

- $\chi_{\Lambda}\cos\theta$

Inclusive deca

$Br(\Lambda_c^+ \to \Lambda X) \approx Br(CF) + Br(SCS)$

$$A^{\alpha}_{CP}(\Lambda^+_c \to \Lambda X) \approx \frac{Br(SCS)}{Br(\Lambda^+_c \to \Lambda X)} \times A^{\alpha}_{CP}(\Lambda^+_c) \approx \lambda^2 A^{\alpha}_{CP}(\Lambda^+_c)$$

- Thus $A^{\alpha}_{CP}(\Lambda^+_c \to \Lambda X) = \mathcal{O}(10^{-4} \sim 10^{-5}).$
- It is at the same order of $A^{\alpha}_{CP}(\Lambda \to p\pi)$

ays in
$$\Lambda_c^+ \to \Lambda^0 X$$

•Singly Cabibbo-suppressed Λ_c^+ decays have CPV at the order of $\mathcal{O}(10^{-3} \sim 10^{-4})$

If observed, not clear for charmed baryon or hyperon, but definitely for baryon CPV!

Remarks

$$\frac{d\Gamma}{d\cos\theta} \propto 1 + \langle P(q) \rangle$$

- It does not depend on the intermediate resonant states, even including Ξ
- •The intermediate states only change the values of the averaged polarization, but not the above formula

•For multi-body decays or inclusive decays, the formula are all the same, since $\cos \theta$ is only related to the Λ and its product, but irrelevant to any other particles in Λ_c decay.

 $q^2)\rangle \alpha_{\Lambda}\cos\theta$

$$\begin{aligned} \mathcal{W}(\boldsymbol{\xi}; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) = & 1 + \alpha_{\psi} \cos^{2} \theta_{\Lambda} \\ & + \alpha_{-} \alpha_{+} \left[\sin^{2} \theta_{\Lambda} \left(n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,x} \right) \right] \\ & + \alpha_{-} \alpha_{+} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} \end{aligned}$$

Parameters	This work	Previous results
α_ψ	$0.461 \pm 0.006 \ \pm 0.007$	0.469 ± 0.027 [25]
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 [27]
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 [27]
$ar{oldsymbol{lpha}}_0$	$-0.692 \pm 0.016 \pm 0.006$	
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 [27]
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	

Backups: $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \bar{\Lambda}$ BESIII, Nature Phys.15, 631 (2019)

FIG. 2. Moments $\mu(\cos\theta_{\Lambda})$ for acceptance uncorrected data as a function of $\cos\theta_{\Lambda}$ for (a) $p\pi^{-}\bar{p}\pi^{+}$ and (b) $p\pi^{-}\bar{n}\pi^{0}$ data sets. The points with error bars are the data, and the solid-line histogram is the global fit result. The dashed histogram shows the no polarization scenario ($\mathcal{W}(\boldsymbol{\xi}; 0, 0, 0, 0) \equiv 1$).

Backups: $\Lambda_c^+ \to \Lambda \pi^+, \Sigma^+ \pi^0$

 $d\Gamma$ $d\cos\theta_0 d\cos\theta_1 d\cos\theta_2 d\phi_1 d\phi_2$ $\propto 2 + 2\alpha_0 \cos^2 \theta_0$ + $\sqrt{1 - \alpha_0^2 \alpha_\Lambda} \sin \Delta_0 \sin(2\theta_0) \sin \theta_1 \cos \theta_2 \sin \phi_1$ + $\sqrt{1 - \alpha_0^2 \alpha_\Lambda} \sin \Delta_0 \sin(2\theta_0) \cos \theta_1 \sin \theta_2 \sin \phi_1$ $\times \sqrt{1 - (\alpha_{\Lambda \pi^+}^+)^2 \cos(\Delta_1^{\Lambda \pi^+} + \phi_2)}$ + $\sqrt{1 - \alpha_0^2 \alpha_\Lambda} \sin \Delta_0 \sin(2\theta_0) \sin \theta_2 \cos \phi_1$ $\times \sqrt{1 - (\alpha_{\Lambda\pi^+}^+)^2 \sin(\Delta_1^{\Lambda\pi^+} + \phi_2)}$ + $\sqrt{1-\alpha_0^2}\sin\Delta_0\sin(2\theta_0)\sin\theta_1\sin\phi_1\alpha_{\Lambda\pi^+}^+$ + $2\alpha_0\alpha_{\Lambda}\cos^2\theta_0\cos\theta_2\alpha^+_{\Lambda\pi^+}$ + $2\alpha_{\Lambda}\cos\theta_2\alpha^+_{\Lambda\pi^+}$,

BESIII, PRD100,072004 (2019)

(color online) Definition of the helicity frame for FIG. 2. $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-, \Lambda_c^+ \to \Lambda \pi^+, \Lambda \to p\pi^-$

