Hadronic Decays of Charmed Baryon Λ_c^+ at BESIII

^{a,b}Yang Gao, ^cCong Geng, ^{a,b}Hai-Ping Peng

^aUniversity of Science and Technology of China ^bState Key Laboratory of Particle Detection and Electronics ^cSun Yat-sen (Zhongshan) University

- > Introduction
- Decays involve neutron
 - $\Lambda_c^+ \to n\pi^+$
 - $\Lambda_c^+ \to n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$
- Decays involve proton
 - $\Lambda_c^+ \to p K_S^0 \eta$
 - $\Lambda_c^+ \to p\eta'$
- \succ Decays involve Λ
 - $\Lambda_c^+ \to \Lambda K^+$
 - Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$
- \succ Decays involve Σ
 - $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$
 - $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ K^+ \pi^- \text{ and } \Sigma^+ K^+ \pi^- \pi^0$

➤ Summary

Introduction

Singly-charmed baryon

- Most of the charmed baryons will eventually decay to Λ_c^+ .
- Many b-baryons decay to Λ_c^+ .
 - Λ_c^+ decays reveal information of strong- and weakinteractions in charm region, complementary to charmed mesons.

- Charmed meson: $m_d \ll m_c \rightarrow$ quark(q) + heavy quark(Q).
- Charmed baryon: $m_u, m_d \ll m_c \rightarrow \text{diquark}(qq) + \text{heavy quark}(Q).$
- The Λ_c^+ baryon is composed of a heavy quark (c) and two light quarks(u, d).
- According to the HQET, the u-d quarks can be treated as a diquark that has zero spin and isospin.
- Λ_c^+ can provide more powerful test on internal dynamics than mesons D^+/D_s^+ .

Introduction

From the PDG we can find that:

- The golden mode of Λ_c^+ decays is $\Lambda_c^+ \rightarrow pK^-\pi^+$ (6.28% ± 0.32%).
- Only one neutron mode has been measured ($\Lambda_c^+ \rightarrow nK_s^0 \pi^+$: 1.82% \pm 0.25%) but the ulletbranching fraction of inclusive decay $\Lambda_c^+ \rightarrow n + X$ is 50% \pm 16% from PDG2022.
- From PDG, the uncertainties of many Λ_c^+ decays are still very large. •

	Hadronic modes with a p or	n:	S = -1 final states				
Γ1	pK ⁰ _S		($1.59\pm~0.08$) %	S=1.1			
Γ2	$pK^{-}\pi^{+}$		(6.28± 0.32) %	S=1.4			
Γ ₃	$p\overline{K}^*(892)^0$	[<i>a</i>]	(1.96 ± 0.27) %				Inclusive modes
Г4	$\Delta(1232)^{++}K^{-}$		(1.08± 0.25) %		Γ76	e ⁺ anything	(3.95± 0.35) %
Γ ₅	$\Lambda(1520)\pi^+$	[a]	$(2.2 \pm 0.5)\%$		F77	p anything	$(50 \pm 16)\%$
Г ₆	$pK^-\pi^+$ nonresonant		$(3.5 \pm 0.4)\%$		Г ₇₀	n anything	(50 ± 16) %
Γ ₇	$pK_S^0\pi^0$		$(1.97 \pm 0.13)\%$	S=1.1	1/8	n anything	(30 ±10)%
Г ₈	$nK_{S}^{0}\pi^{+}$		(1.82± 0.25) %		Γ ₇₉	A anything	(38.2 + 2.9) %
Гg	$p\overline{K}_{0}^{0}\eta$		(8.3 \pm 1.8) $ imes$ 10 $^{-3}$		Гоо	K^0 anything	$(00 \pm 07)\%$
Γ ₁₀	$pK_S^0\pi^+\pi^-$		(1.60 ± 0.12) %	S=1.1	180	n sanyting	(9.9 ± 0.7) /6
Γ ₁₁	$\rho K^- \pi^+ \pi^0$		(4.46± 0.30) %	S=1.5	81	3prongs	$(24 \pm 8)\%$
Γ ₁₂	$pK^{*}(892)^{-}\pi^{+}$	[<i>a</i>]	(1.4 \pm 0.5) %				
Γ ₁₃	$p(K^-\pi^+)_{nonresonant}\pi^0$		(4.6 \pm 0.8) %				
Г ₁₄	$\Delta(1232)K^{*}(892)$		seen				
Γ ₁₅	$pK^-2\pi^+\pi^-$		(1.4 \pm 0.9) $ imes$ 10 $^{-3}$				
Γ ₁₆	$pK^{-}\pi^{+}2\pi^{0}$		$(1.0 \pm 0.5)\%$				

> Introduction

Decays involve neutron

- $\Lambda_c^+ \to n\pi^+$
- $\Lambda_c^+ \to n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$
- Decays involve proton
 - $\Lambda_c^+ \to p K_S^0 \eta$
 - $\Lambda_c^+ \to p\eta'$
- \succ Decays involve Λ
 - $\Lambda_c^+ \to \Lambda K^+$
 - Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$
- \succ Decays involve Σ
 - $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$
 - $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ K^+ \pi^- \text{ and } \Sigma^+ K^+ \pi^- \pi^0$

> Summary

Data Samples and analysis method

• The largest data samples collected near the $\Lambda_c^+ \overline{\Lambda}_c^-$ production threshold

ST

Single tag (ST):

•
$$\mathcal{B}(\Lambda_c^+ \to f) = \frac{N_{ST}}{2 \times N_{pair}^{tot} \times \epsilon_{ST}}$$

- ϵ_{ST} : ST detection efficiency
- Only reconstruct one of the pair.

 $\overline{\Lambda}_c^-$

ST

- Higher backgrounds.
- Higher efficiencies.

First observation of $\Lambda_c^+ \rightarrow n\pi^+$

Phys. Rev. Lett. 128, 142001 (2022)

First observation of $\Lambda_c^+ ightarrow n\pi^+$

Decay	Yields	Branching fraction
$\Lambda_c^+ \to n\pi^+$	50 ± 9	$(6.6 \pm 1.2_{\text{stat}} \pm 0.4_{\text{syst}}) \times 10^{-4}$
$\Lambda_c^+\to\Lambda\pi^+$	376 ± 22	$(1.31 \pm 0.08_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-2}$
$\Lambda_c^+\to \Sigma^0\pi^+$	343 ± 22	$(1.22 \pm 0.08_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-2}$

✓ Define
$$R = \mathcal{B}(\Lambda_c^+ \to n\pi^+) / \mathcal{B}(\Lambda_c^+ \to p\pi^0)$$

• Use $\mathcal{B}(\Lambda_c^+ \to p\pi^0) < 8.0 \times 10^{-5}$ at 90% C.L. of Belle from Phys. Rev. D 103, 072004 (2021)

> 7.2 at 90% C.L.

✓ Red peak: Λ⁺_c → nπ⁺
✓ Blue peak: Λ⁺_c → Λπ⁺
✓ Green peak: Λ⁺_c → Σ⁰π⁺
✓ Con

R

Consistent with results from PDG

• Disagree with most theoretical predictions by phenomenological models.

Measurement of $\Lambda_c^+ \rightarrow n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$

 Precise measurements of more neutron-involved final states are crucial to testify the isospin and SU(3) symmetries in the charmed baryon decays.

Measurement of $\Lambda_c^+ \to n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$

Modes	BF(%)
$\Lambda_c^+ o n\pi^+$	$0.066 \pm 0.012 \pm 0.004$
$\Lambda_c^+ o n \pi^+ \pi^0$	$0.64 \pm 0.09 \pm 0.02$
$\Lambda_c^+ o n \pi^+ \pi^- \pi^+$	$0.45 \pm 0.07 \pm 0.03$
$\Lambda_c^+ ightarrow n K^- \pi^+ \pi^+$	$1.90 \pm 0.08 \pm 0.09$
$\Lambda_c^+ o n \overline{K}{}^0 \pi^+$	$3.640 \pm 0.460 \pm 0.022$
Sum	$6.696 \pm 0.48 \pm 0.10$

- BESIII have measured about 6.7% Λ_c^+ decays involve neutron(from IP directly.)
- These measurements provide more input for phenomenological models.

- > Introduction
- Decays involve neutron
 - $\Lambda_c^+ \to n\pi^+$
 - $\Lambda_c^+ \to n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$
- Decays involve proton
 - $\Lambda_c^+ \to p K_S^0 \eta$
 - $\Lambda_c^+ \to p\eta'$
- \succ Decays involve Λ
 - $\Lambda_c^+ \to \Lambda K^+$
 - Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$
- \succ Decays involve Σ
 - $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$
 - $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ K^+ \pi^- \text{ and } \Sigma^+ K^+ \pi^- \pi^0$

≻ Summary

Measurement of $\Lambda_c^+ \rightarrow p K_S^0 \eta$

Measurement of $\Lambda_c^+ \rightarrow p\eta'$

	$\Lambda_c^+ o p \eta^\prime imes {f 10^{-4}}$
3.6 σ This work	$5.62^{+2.46}_{-2.04}\pm0.26$
^a JHEP 03, 090 (2022)(Belle)	4.73 ± 0.97
^b Phys. Rev. D 55, 7067 (1997)	4 - 6
^c Phys. Rev. D 49, 3417 (1994)	0.4 - 2
^d Phys. Lett. B 790, 225 (2019)	$12.2^{+14.3}_{-8.7}$

- The branching fraction of SCS decay Λ⁺_c → pη' is consistent the Belle result and the predictions in Ref [b][d].
- The result is significantly higher than that in Ref [c].

Submitted to PRD, pre-print as arXiv.2207.14461

- > Introduction
- Decays involve neutron
 - $\Lambda_c^+ \rightarrow n\pi^+$
 - $\Lambda_c^+ \to n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$
- Decays involve proton
 - $\Lambda_c^+ \to p K_S^0 \eta$
 - $\Lambda_c^+ \to p\eta'$
- \succ Decays involve Λ
 - $\Lambda_c^+ \to \Lambda K^+$
 - Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$
- \succ Decays involve Σ
 - $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$
 - $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ K^+ \pi^- \text{ and } \Sigma^+ K^+ \pi^- \pi^0$

> Summary

Measurement of $\Lambda_c^+ \to \Lambda K^+$

SCS Decay

	Results
BaBar experiment	$(4.4 \pm 0.4 \pm 0.3)\%$
Belle collaboration	$(7.4 \pm 1.0 \pm 1.2)\%$
PDG	$(4.7 \pm 0.9)\%$
This work	$(4.66 \pm 0.34 \pm 0.15)\%$

- $\mathcal{R} = \frac{\mathcal{B}(\Lambda_c^+ \to \Lambda K^+)}{\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+)} = (4.66 \pm 0.34 \pm 0.15)\%$
- Consistent with the BaBar measurement.
- Improve the precision of the world average value by ~ 3 times. $\mathcal{B}(\Lambda_c^+ \to \Lambda K^+) = (6.06 \pm 0.53 \pm 0.19) \times 10^{-4}$
- As pure factorizable contribution is reliably calculated:
- $\mathcal{R}_{fac} = (7.43 \pm 0.14)\%$ (calculated)
- $\mathcal{R}_{non-fac} = \mathcal{R} \mathcal{R}_{fac} = -(2.77 \pm 0.42)\%$
- The non-factorizable effect in Λ_c^+ decay is important and has been seriously under-estimated in current theoretical modes.

Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

- First charmed baryon decays PWA at BESIII.
- Intermediate processes in $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ are interesting in theoretical calculations.

(c)

W

• $\Lambda_c^+ \to \Lambda \rho^+$ consists of both factorizable and non-factorizable contributions.

• $\Lambda_c^+ \rightarrow \Sigma(1385)\pi$ regarded as pure non-factorizable Align contributions.

Alignment angles correctly considered

$$\begin{aligned} \mathbf{A}_{\lambda_{\Lambda_{c}^{+}},\lambda_{p}} &= (A_{\lambda_{\Lambda_{c}^{+}},\lambda_{p}}^{\rho} + A_{\lambda_{\Lambda_{c}^{+}},\lambda_{p}}^{NR}) \\ \mathbf{O} &+ \sum_{\lambda_{p}^{\prime}} (\sum A_{\lambda_{\Lambda_{c}^{+}},\lambda_{p}^{\prime}}^{\Sigma^{*+}}) D_{\lambda_{p}^{\prime},\lambda_{p}}^{1/2}(\alpha_{p},\beta_{p},\gamma_{p})) \\ &+ \sum_{\lambda_{p}^{\prime}} (\sum A_{\lambda_{\Lambda_{c}^{+}},\lambda_{p}^{\prime}}^{\Sigma^{*0}}) D_{\lambda_{p}^{\prime},\lambda_{p}}^{1/2}(\alpha_{p}^{\prime},\beta_{p}^{\prime},\gamma_{p}^{\prime})) \end{aligned}$$

- Use new-developed TensorFlow based package TF-PWA* to perform the PWA fit. (*<u>https://github.com/jiangyi15/tf-pwa</u>)
- Use helicity formalism to construct the full decay amplitude.
- PWA is able to extract the intermediate processes explicitly.

Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$

- Use single tag method, extract around 10K signal candidates with purities > 80%
- Fit results on invariant mass spectra:

	Theoretical c	This work	PDG	
$10^2 \times \mathcal{B}(\Lambda_c^+ \to \Lambda \rho(770)^+)$	4.81 ± 0.58 [13]	4.0 [14, 15]	4.06 ± 0.52	< 6
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^+ \pi^0)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	5.86 ± 0.80	
$10^3 \times \mathcal{B}(\Lambda_c^+ \to \Sigma(1385)^0 \pi^+)$	2.8 ± 0.4 [16]	2.2 ± 0.4 [17]	6.47 ± 0.96	
$lpha_{\Lambda ho(770)^+}$	-0.27 ± 0.04 [13]	-0.32 [14, 15]	-0.763 ± 0.066	
$lpha_{\Sigma(1385)^+\pi^0}$	$-0.91\substack{+0.4\\-0.5}$	$_{10}^{45}$ [17]	-0.917 ± 0.083	
$lpha_{\Sigma(1385)^0\pi^+}$	$-0.91\substack{+0.4\\-0.2}$		-0.79 ± 0.11	

Ref. [13]: Phys. Rev. D 101 (2020) 053002.
Ref. [14,15]: Phys. Rev. D 46 (1992) 1042; Phys. Rev. D 55 (1997) 1697.
Ref. [16]: Eur. Phys. J. C 80 (2020) 1067.
Ref. [17]: Phys. Rev. D 99 (2019) 114022.

First measurements

• α extracted through results of internal partial wave amplitudes.

- > Introduction
- Decays involve neutron
 - $\Lambda_c^+ \to n\pi^+$
 - $\Lambda_c^+ \to n\pi^+\pi^0$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$
- Decays involve proton
 - $\Lambda_c^+ \to p K_S^0 \eta$
 - $\Lambda_c^+ \to p\eta'$
- \succ Decays involve Λ
 - $\Lambda_c^+ \to \Lambda K^+$
 - Partial wave analysis of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$
- \succ Decays involve Σ
 - $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$
 - $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ K^+ \pi^- \text{ and } \Sigma^+ K^+ \pi^- \pi^0$

> Summary

Measurement of $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$

Mode		Result(%)		
$\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) / \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+) / \mathcal{B}$	⁰ π ⁺)	$3.61 \pm 0.73 \pm 0.05$		
$\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$		$0.047 \pm 0.009 \pm 0.001 \pm 0.003$		
Source		Result(%)		
Theoretical prediction		0.054 ± 0.007		
Current PDG		0.052 ± 0.008		
Source		Result(%)		
Belle		$5.6 \pm 1.4 \pm 0.8$		
BaBar		$3.8 \pm 0.5 \pm 0.3$		

• Compared with BESIII result, both from Belle and BaBar suffer from relatively large systematic uncertainties.

Measurement of $\Lambda_c^+ \to \Sigma^0 K^+$ and $\Lambda_c^+ \to \Sigma^+ K_S^0$

Mode	Result(%)
$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0) / \mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-)$	$1.06 \pm 0.31 \pm 0.04$
$\mathcal{B}(\Lambda_c^+\to \Sigma^+ K_S^0)$	$0.048 \pm 0.014 \pm 0.002 \pm 0.003$

Source	Result(%)
Theoretical prediction	0.054 ± 0.007
Current PDG	

• The newly measured branching fraction $\mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)$ and improved measurement of $\mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)$ which combines BESIII results and PDG value, can better constrain and exclude theoretical models involving charmed baryon decays.

Measurement of branching fractions for $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ \phi$ and $\Sigma^+ K^+ \pi^-(\pi^0)$

- $\Lambda_c^+ \to \Sigma^+ K^+ K^-$ final states also containing $\Sigma^+ \phi$ contributions.
- Relative BFs extracted, $\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$ as reference.

Measurement of branching fractions for $\Lambda_c^+ \to \Sigma^+ K^+ K^-, \Sigma^+ \phi$ and $\Sigma^+ K^+ \pi^-(\pi^0)$

• (d): M_{BC} 1D distribution of $\Lambda_c^+ \to \Sigma^+ K^+ \pi^-$

• (e): M_{BC} 1D distribution of $\Lambda_c^+ \to \Sigma^+ K^+ \pi^- \pi^0$

Mode	RBF(This work)%	RBF(Belle)%	BF(This work)%	BF(PDG)%
$\Lambda_c^+ \to \Sigma^+ \phi$	$9.2 \pm 1.8 \pm 0.5$	$8.5 \pm 1.2 \pm 1.2$	$0.414 \pm 0.080 \pm 0.025 \pm 0.023$	0.39 ± 0.06
$\Lambda_c^+ \to \Sigma^+ K^+ K^- (\text{non} - \phi)$	4.38 ± 0.79 ± 0.16		$0.197 \pm 0.036 \pm 6007 \pm 0.011$	
$\Lambda_c^+ \to \Sigma^+ K^+ K^-$	$7.33 \pm 3.80 \pm 0.31$	$7.6 \pm 0.7 \pm 0.9$	$0.330 \pm 0.036 \pm 0.014 \pm 0.018$	0.35 ± 0.04
$\Lambda_c^+ \to \Sigma^+ K^+ \pi^-$	4.52 ± 0.52 ± 0.23	$4.7\pm1.1\pm0.8$	$0.202 \pm 0.023 \pm 0.011 \pm 0.011$	0.21 ± 0.06
$\Lambda_c^+ \to \Sigma^+ K^+ \pi^- \pi^0$	< 2.4		≪ < 0.11	

Summary

- BESIII have collected the largest data samples with 6.4 fb⁻¹ integrated luminosity from 4.600 GeV to 4.951 GeV near the $\Lambda_c^+ \overline{\Lambda_c^-}$ production threshold.
- $\Lambda_c^+ \to n\pi^+(\pi^0)$, $n\pi^+\pi^-\pi^+$ and $nK^-\pi^+\pi^+$ are **firstly** measured.
- BESIII have measured about 6.7% Λ_c^+ decays involve neutron(from IP directly.)
- $\Lambda_c^+ \to p\eta'$ is searched with **3**.6 σ significance.
- $\Lambda_c^+ \to \Lambda K^+$ is measured and is **consistent** with BaBar's result.
- First PWA of $\Lambda_c^+ \to \Lambda \pi^+ \pi^0$ at BESIII performed.
- SCS decays $\Lambda_c^+ \to \Sigma^0 K^+$ with **improved** measurement, and $\Lambda_c^+ \to \Sigma^+ K_S^0$ firstly measured.
- $\Lambda_c^+ \to \Sigma^+ h^+ h^-(\pi^0)$ decays measured, **consistent** with PDG results.
- BESIII has made great progress on the exploration of the charmed baryon Λ_c^+ hadronic decay.
- More results $(\Lambda_c^+ \to p\pi^0, p\eta, p\omega, \bar{n}X, nK_S^0\pi^+, nK_S^0K^+, \Xi^-K^+\pi^+ \dots)$ will be released in the future.

Thanks for your attention!