

Semi-leptonic Λ_c^+ decays at BESIII

Xu-Dong Yu

Peking University

(on behalf of the BESIII collaboration)

Xu-Dong Yu

BESIII实验上粲强子、QCD及新物理研讨会·兰州

Aug 23th, 2022

1

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \to p K^- e^+ \nu_e$ Based on <u>arXiv:2207.11483</u>
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$ BESIII preliminary
- Other ongoing analysis
- Summary

Based on arXiv:2207.14149

• Introduction

- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

Introduction-Theory(I)

- Weak decay of heavy baryons: $\Lambda_c^+ \to \Lambda(p\pi^-)e^+\nu_e$
- Differential decay width: $d\Gamma = \frac{1}{2m_{\Lambda_c}} (2\pi)^4 d\Phi_4 \overline{|\mathcal{M}|^2}$
- Helicity amplitude formalism: $\mathcal{M} = H^{\mu}L_{\mu}$

Four-body phase space

Introduction-Theory(II)

- Leptonic part can be precisely calculated.
- Hadronic part is hard to calculate from first principle, since strong interaction is involved.
- With the help of effective field theory, hadronic amplitude can be parameterized by form factors which are hybrids of on-shell states and off-shell operators.
 - $\langle \Lambda(p_2, s_2) | H_{\text{eff}} | \Lambda_c(p_1, s_1) \rangle = \langle \Lambda(p_2, s_2) | (V A) | \Lambda_c(p_1, s_1) \rangle$ Form factor is a function of transfer momentum $q = p_1 p_2$
 - $H_V(\lambda)_\mu = \langle \Lambda(p_2, s_2) | V_\mu | \Lambda_c(p_1, s_1) \rangle = \bar{u}(p_2, s_2) \left[\gamma_\mu f_1(q^2) + i\sigma_{\mu\nu} \frac{q^\nu}{m_1} f_2(q^2) + \frac{q^\mu}{m_1} f_3(q^2) \right] u(p_1, s_1)$

•
$$H_A(\lambda)_\mu = \langle \Lambda(p_2, s_2) | A_\mu | \Lambda_c(p_1, s_1) \rangle = \bar{u}(p_2, s_2) \left[\gamma_\mu g_1(q^2) + i\sigma_{\mu\nu} \frac{q^\nu}{m_1} g_2(q^2) + \frac{q^\mu}{m_1} g_3(q^2) \right] u(p_1, s_1)$$

- $H_{\lambda_{\Lambda}\lambda_{W}} = H_{\mu}(\lambda_{\Lambda})\epsilon^{\mu}(\lambda_{W}) = [H_{V}(\lambda_{\Lambda}) H_{A}(\lambda_{\Lambda})]_{\mu}\epsilon^{\mu}(\lambda_{W}) = H_{V}(\lambda_{\Lambda}\lambda_{W}) H_{A}(\lambda_{\Lambda}\lambda_{W})$
- Six helicity amplitude: $H_V\left(\frac{1}{2},0\right), H_V\left(\frac{1}{2},1\right), H_V\left(\frac{1}{2},t\right), H_A\left(\frac{1}{2},0\right), H_A\left(\frac{1}{2},1\right), H_A\left(\frac{1}{2},t\right)$
- In the limit of negligible lepton mass, only four of them remained: $H_V\left(\frac{1}{2},t\right)$, $H_A\left(\frac{1}{2},t\right)$

• Decay asymmetry:
$$\alpha_{\Lambda_c} = \frac{|H_{1/2\,1}|^2 - |H_{-1/2\,-1}|^2 + |H_{1/2\,0}|^2 - |H_{-1/2\,0}|^2}{|H_{1/2\,1}|^2 + |H_{-1/2\,0}|^2 + |H_{1/2\,0}|^2 + |H_{-1/2\,0}|^2}$$

How to obtain FF in theory?
 Model prediction: NRQM, MIT bag model, RQM, LFQM, QCD sum rules, SU(3) flavor symmetry LQCD

Introduction-Experiment

Table 1: BFs of the SL decay $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ compared with different theoretical estimations. To distinguish different papers using constituent quark model, HR denotes Hussain and Roberts,

Chiral unitary

approach [29]

 $(2-5) \times 10^{-3}$

Light-front

quark model [31]

 0.31 ± 0.08

 $(7 \pm 2) \times 10^{-3}$

PRCI denotes Pervin, Roberts and Capstick. All the values are given in unit ot %.

PRCI [17]

0.38

 10.00×10^{-2}

 4.00×10^{-2}

- In 2015, BESIII reported the first measurement of absolute branching fraction(BF)
 - $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38_{\text{stat.}} \pm 0.20_{\text{syst.}})\%$

•
$$\mathcal{B}(\Lambda_c^+ \to \Lambda \mu^+ \nu_\mu) = (3.49 \pm 0.46_{\text{stat.}} \pm 0.27_{\text{syst.}})\%$$

- $\mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e) = (3.95 \pm 0.34_{\text{stat.}} \pm 0.09_{\text{syst.}})\%$ Inclusive
- What about other decays: $\Lambda_c \rightarrow \Lambda(1520), \Lambda(1405), \Lambda(1600)$?
 - $\frac{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e)} = (91.9 \pm 12.5_{\text{stat.}} \pm 5.4_{\text{syst.}})\%$
 - $\frac{\mathcal{B}(D^0 \to K^- e^+ \nu_e)}{\mathcal{B}(D^0 \to X e^+ \nu_e)} = (54.7 \pm 1.0)\%$
- Goals:
 - Improve the precision of BF
 - Measurement of form factors $\Lambda_c \rightarrow \Lambda_c^{\parallel}$
 - Search for more Λ_c semi-leptonic(SL) decay channels

State

 $\Lambda(1405)\frac{1}{2}$

 $\Lambda(1520)^{\frac{3}{2}}$

 $\Lambda(1600)^{\frac{1}{2}^+}$

 $\Lambda(1890)^{3+}_{2}$

HR [28]

0.24

 5.94×10^{-2}

 $1.26 imes 10^{-2}$

 $3.16 imes10^{-4}$

 $\Lambda(1820)^{\frac{5}{2}^+} \mid 1.32 \times 10^{-4}$

Lattice QCD [32]

 $(5.12 \pm 0.82) \times 10^{-1}$

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

BEPCII

BESIII detector

Beijing Electron Positron Collider II(BEPCII)

Double storage ring ~ 240 m

2020: energy upgrade to 2.45 GeV
2004: started BEPCII upgrade, BESIII construction
2008: test run
2009-now: BESIII physics run

- 1989-2004 (BEPC): $\mathcal{L}_{\text{peak}} = 1.0 \times 10^{31} \text{ cm}^{-2} \cdot \text{s}^{-1}$
- 2009-now (BEPCII): $\mathcal{L}_{peak} = 1.0 \times 10^{33} \text{ cm}^{-2} \cdot \text{s}^{-1}$

BESIII detector

Semi-leptonic Λ_c^+ decays at BESIII

Dataset

• Threshold effect:

pair production of charmed baryons without accompanying hadrons!

• $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

- Center-of-mass energy: $E_{\rm cms} = 4.6 \sim 4.7 \, {\rm GeV}$
- Integrated luminosity:
 4.50 fb⁻¹

Double Tag Method can be used. Kinematic relation to constrain missing particle.

E _{cms} (MeV)	ℒ (pb⁻¹)
$4599.53 \pm 0.07 \pm 0.74$	$586.9 \pm 0.1 \pm 3.9$
$4611.86 \pm 0.12 \pm 0.32$	$103.83 \pm 0.05 \pm 0.55$
$4628.00 \pm 0.06 \pm 0.32$	$521.52 \pm 0.11 \pm 2.76$
$4640.91 \pm 0.06 \pm 0.38$	$552.41 \pm 0.12 \pm 2.93$
$4661.24 \pm 0.06 \pm 0.29$	$529.63 \pm 0.12 \pm 2.81$
$4681.92 \pm 0.08 \pm 0.29$	$1669.31 \pm 0.21 \pm 8.85$
$4698.82 \pm 0.10 \pm 0.39$	$536.45 \pm 0.12 \pm 2.84$
(Chin.Phys.C 39 (2015) 9, 093001

arXiv:2205.04809

Xu-Dong Yu

Semi-leptonic Λ_c^+ decays at BESIII

Analysis method

Semi-leptonic Λ_c^+ decays at BESIII

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

BF measurement

Semi-leptonic Λ_c^+ decays at BESIII

Decay amplitude of $\Lambda_c^+ \to \Lambda e^+ \nu_e$

Parameterization of helicity form factors

• ***z*-expansion**:
$$f(q^2) = \frac{a_0^f}{1 - q^2 / (m_{\text{pole}}^f)^2} [1 + \alpha_1^f \times z(q^2)]$$

- m_{pole}^{f} : pole mass, $m_{\text{pole}}^{f_{+},f_{\perp}} = 2.112 \text{ GeV}/c^{2}$ and $m_{\text{pole}}^{g_{+},g_{\perp}} = 2.460 \text{ GeV}/c^{2}$
- a_0^f and α_1^f : free parameters

•
$$z(q^2) = \frac{(\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0})}{(\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0})}$$
 with $t_0 = q_{\max}^2 = (m_{\Lambda_c} - m_{\Lambda})^2$, $t_+ = (m_D - m_K)^2$

•
$$m_D = 1.870 \text{ GeV}/c^2 \text{ and } m_K = 0.494 \text{ GeV}/c^2$$

Events/(0.14 GeV²/c⁴) 00 001 001 Five independent free parameters: Events/0.2 120 100 20 $a_1^{g_{\perp}}, a_1^{f_{\perp}} \text{ and } r_{f_{\perp}} = a_0^{f_{\perp}} / a_0^{g_{\perp}}, r_{f_{\perp}} =$ $a_0^{f_\perp}/a_0^{g_\perp}$ and $r_{a_\perp} = a_0^{g_+}/a_0^{g_\perp}$ 50 • Choose $a_0^{g_\perp}$ as the reference and set 0.5 -0.5 0 0.5 $\cos\theta_{\rm p}$ $q^2 (\text{GeV}^2/c^4)$ $a_1^{g_{\perp}} = a_1^{g_+}$ and $a_1^{f_{\perp}} = a_1^{f_+}$ Four-dimensional ML fit performed ¹⁵⁰ Only ratios of amplitudes can be Intermined in ML fit Events/(0.2π) 150 100 determined in ML fit. 50 Absolute values needs BF input -0.5 0.5 -2 0 0 2 normalization. $\cos\theta_{e}$ χ (radians) Form factor $\Lambda_c \rightarrow \Lambda$ firstly measured!

Indirect Test of SM

Xu-Dong Yu

Semi-leptonic Λ_c^+ decays at BESIII

Comparison with theoretical predictions

FIG. 3. Comparison of form factors with LQCD calculations. The bands show the total uncertainties.

- Dependences of measured FFs show different kinematic behavior compared to those predicted from LQCD calculations.
- No clear difference is observed within uncertainties for the resulting differential decay rate of LQCD.
- The comparison between other theoretical models.

FIG. 4. Comparison of the differential decay rates with LQCD predictions. The band show the total uncertainties.

TABLE III. Comparison of $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ from theoretical calculations and our measurement. Disfavor at C.L. more than 95%

		$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+)$	$ u_e)$ [%]
	Constituent quark model (HONR) [8]	4.25	
	Light-front approach [9]	1.63	
	Covariant quark model [10]	2.78	
	Relativistic quark model [11]	3.25	
	Non-relativistic quark model [12]	3.84	
▼ '	Light-cone sum rule [13]	3.0 ± 0.5	3
	Lattice QCD [14]	3.80 ± 0.1	22
	SU(3) [15]	3.6 ± 0.4	4
	Light-front constituent quark model [16]	3.36 ± 0.5	87
	MIT bag model [16]	3.48	
	Light-front quark model [17]	4.04 ± 0.5	75
	This work	$3.56 \pm 0.11 =$	± 0.07

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

Measurement of $\mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu_e)$

- ST data set is same with last analysis.
- Select signal pK^-e^+ in the recoiling side of $\overline{\Lambda}_c^ \Rightarrow$ Contamination from $\Lambda_c^+ \rightarrow pK^-\pi^+$ and $\Lambda_c^+ \rightarrow pK^-\pi^+\pi^0$

Search for $\Lambda_c^+ \to \Lambda(1520)e^+\nu_e$

• To extract the yield of $\Lambda_c^+ \to \Lambda(1520)e^+\nu_e$, a two-dimensional (2D) likelihood fit is performed to the M_{pK^-} and U_{miss} distributions.

Xu-Dong Yu

Semi-leptonic Λ_c^+ decays at BESIII

Discussion

- Considering systematic uncertainty,
 - $\Lambda_c^+ \to p K^- e^+ v_e$ is observed with **8**. 2σ significance.
 - An Evidence for $\Lambda_c^+ \to \Lambda(1520)e^+\nu_e$ with a significance of **3**. 3σ .
- Comparing with BESIII measurement for the inclusive SL BF,
 - $[\mathcal{B}(\Lambda_c^+ \to pK^-e^+\nu_e)/\mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e)] = (2.1 \pm 0.4_{\text{stat.}} \pm 0.1_{\text{syst.}})\%$
 - $[\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e)/\mathcal{B}(\Lambda_c^+ \to Xe^+\nu_e)] = (3.4 \pm 1.4_{\text{stat.}} \pm 0.4_{\text{syst.}})\%$
- Comparing with theoretical calculations, the measured BF for $\Lambda_c^+ \rightarrow \Lambda(1520)e^+\nu_e$ is consistent with all these predictions within 2σ .

	$\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e) \ [\times 10^{-3}]$
Constituent quark model [4]	1.01
Nonrelativistic quark model [5]	0.60
Lattice QCD [17, 18]	$0.512 \pm 0.082 \pm 0.008$
Measurement	$1.36 \pm 0.56 \pm 0.14$

- Extending the understanding of Λ_c^+ SL decays beyond the mode $\Lambda_c^+ \to \Lambda l^+ \nu_l$.
- Prospects: amplitude analysis of pK^- mass spectrum, form factors

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

Signal selection

• ST data set reconstructed by 12 hadronic Λ_c decay mode

• Select signal $\Lambda \pi^+ \pi^- e^+ (pK_S^0 \pi^- e^+)$ in the recoiling side of $\overline{\Lambda}_c^ \Rightarrow$ Challenge from misidentification between *e* and π

Background rejection

- $\succ \Lambda \pi^+ \pi^- e^+ \nu_e (p K_S^0 \pi^- e^+ \nu_e)$ mode
- 1. Tight PID requirement
 - Tag mode $\Lambda_c^+ \to p\pi^+\pi^-$ and $\Lambda_c^+ \to \Sigma^+\pi^+\pi^-$ electron EMC Info valid
 - $Prob(e)/[Prob(e) + Prob(\pi) + Prob(K)] > 0.99(0.98)$
- 2. γ-conversion background
 - $\cos \theta(e,\pi) < 0.88(0.92)$
- 3. $\Lambda \pi^+ \pi^- \pi^+ (pK_S^0 \pi^- \pi^+)$ background
 - $M(\Lambda \pi^+ \pi^- e(\pi)^+) < 2.27 \text{ GeV}/c^2 \left(M(pK_S^0 \pi^- e(\pi)^+) < 2.28 \text{ GeV}/c^2 \right)$
- 4. Miss- $\pi^0(\gamma)$ background
 - $\cos \theta(\text{miss}, \gamma) < 0.81(0.90)$

[1] G. Punzi, eConf C030908, MODT002 (2003)

Cuts optimized with FOM scanning by using Punzi-FOM^[1] = $\frac{\varepsilon}{3/2 + \sqrt{B}}$

Signal yields estimation

 PEKING UNIVERSITY

- No signals observed on data, setting ULs on BF.
- Maximum likelihood estimator extended from the **profile likelihood method**^[1].

```
[1] NIMA 551, 493 (2005).
```

- The backgrounds separated into two categories:
 - non- Λ_c background, denoted as bkg1 – – Estimated by data sideband
 - Λ_c background, denoted as bkg2 – – Estimated by MC simulation
- The observed events consist of three parts: signal, bkg1 and bkg2
 - $N^{\text{obs}} = N_{\text{sig}} + N_{\text{bkg1}} + N_{\text{bkg2}}$ ---- Background estimation
 - N^{obs} follows a Poisson distribution(\mathcal{P}), $N^{\text{obs}} \sim \mathcal{P}(N_{\text{obs}}, N_{\text{sig}} + N_{\text{bkg1}} + N_{\text{bkg2}})$
- $N_{\text{sig}} = \mathcal{B}_{\text{sig}} \cdot \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon^{\text{sig}} = \mathcal{B}_{\text{sig}} \cdot N^{\text{eff}}$
 - N^{eff} expected to follow a Gaussian distribution (\mathcal{G}) with mean $\mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}}$ and width $\mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}} \cdot \sigma, N^{\text{eff}} \sim \mathcal{G}\left(N^{\text{eff}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}} \cdot \sigma\right)$
 - $\frac{\delta N^{\text{eff}}}{N^{\text{eff}}} = \frac{\delta \mathcal{B}_{\text{sig}}}{\mathcal{B}_{\text{sig}}} = \sigma$ ---- Systematic uncertainties estimation

Profile likelihood method & Upper Limit

• Joint likelihood function:

•
$$\mathcal{L} = \mathcal{P}(N_{\text{obs}} | N^{\text{eff}} \cdot \mathbf{\mathcal{B}} + \mathbf{N}_{\text{bkg1}} + \mathbf{N}_{\text{bkg2}}) \cdot \mathcal{G}(N^{\text{eff}} | \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}}$$

 $\varepsilon_{\text{MC}}^{\text{sig}} \cdot \sigma) \cdot \mathcal{P}(N_{\text{data}}^{\text{SB}} | N_{\text{bkg1}}/r) \cdot \mathcal{G}(N_{\text{bkg2}} | N_{\text{bkg2}}^{\text{MC}}, \sigma_{\text{bkg2}}^{\text{MC}})$

• Based on the Bayesian method, likelihood is a function of signal BF \mathcal{B} , with variation of N^{eff} , N_{bkg1} and N_{bkg2} . The fixed parameters for joint likelihood fit.

Decay mode	N^{obs}	BNETS	$\mathcal{B}^{ ext{inter}}$	$arepsilon_{ m MC}^{ m sig}$	σ	$N_{ m data}^{ m SB}$	r	$N_{ m bkg2}^{ m MC}$	$\sigma_{ m bkg2}^{ m MC}$
$\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$	4	123147	63.9%	9.13%	15.2%	9	1.533	5.3	0.4
$\Lambda_c^+ \to p K_{\rm S}^0 \pi^- e^+ \nu_e$	2	123147	69.2%	12.70%	7.5%	u 10 y	1.533	2.2	0.2

• The UL on the $\mathcal{B}(\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e)$ at 90% C.L. is **4**. **4**×**10**⁻⁴.

- If assuming all the final states from $\Lambda(1520)$, the UL on $\mathcal{B}(\Lambda_c^+ \to \Lambda(1520)e^+\nu_e)$ at 90% C.L. is 4.9×10^{-3} .
- If assuming all the final states from $\Lambda(1600)$, the UL on $\mathcal{B}(\Lambda_c^+ \to \Lambda(1600)e^+\nu_e)$ at 90% C.L. is 1.0×10^{-2} .

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

Other ongoing analysis

$\gg \Lambda_c^+ \rightarrow n e^+ \nu_e$

- Singly Cabibbo-suppressed transition $c \rightarrow d$
- Many theoretical-model calculations
- Challenge in experiment:
 - 1. Two missing particles: n and v_e
 - 2. Huge background from $\Lambda_c^+ \to \Lambda e^+ \nu_e$

Quoted form Table XXI in arXiv:2109.01216

Process	NRQM	RQM	RQM	QSR	QSR	CQM	LQCD	LFQM	SU(3)	Expt
	[232]	[236]	[237]	[243]	[244]	[238]	[248, 249]	[227]	[251]	[31]
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.0(2.2)	1.4	3.25	2.6 ± 0.4	3.0 ± 0.3	2.78	3.8 ± 0.2	4.04	3.6 ± 0.4	3.6 ± 0.4
		-0.812		$^{-1}$	-0.88 ± 0.03				-0.86 ± 0.03	-0.86 ± 0.04
$\Lambda_c^+ \to \Lambda^0 \mu^+ \nu_\mu$			3.14				3.7 ± 0.2	3.90	3.6 ± 0.4	3.5 ± 0.5
									-0.86 ± 0.04	
$\Lambda_c^+ \to n e^+ \nu_e$	$0.22 \ (0.34)$	0.26	0.268			0.20	0.41		0.49 ± 0.05	
									-0.89 ± 0.04	

 $\succ \Lambda_c^+ \rightarrow \Sigma \pi e^+ \nu_e$

- $\mathcal{B}(\Lambda(1405) \rightarrow \Sigma \pi) = 100\%$ and $\mathcal{B}(\Lambda(1520) \rightarrow \Sigma \pi) = (42 \pm 1)\%$
- Search for Λ^* in $\Sigma\pi$ invariant mass spectrum
- Nature of $\Lambda(1405)$? *uds* bound state, dynamically generate molecular state, multi-quark state

- Introduction
- BESIII experiment
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
- $\Lambda_c^+ \rightarrow p K^- e^+ \nu_e$
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
- Other ongoing analysis
- Summary

- Semi-leptonic Λ_c decays provide good opportunities to study the dynamics of charm baryons, test standard model and probe new physics.
- $\Lambda_c^+ \to \Lambda e^+ \nu_e$
 - Improved measurement of BF
 - Form factors, comparing with LQCD
- $\Lambda_c^+ \to p K^- e^+ \nu_e$
 - First observed with 8.2 σ significance
 - Evidence of $\Lambda(1520)$ in pK^- invariant mass spectrum
- $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$
 - Search for $\Lambda_c^+ \to \Lambda^* e^+ \nu_e$ and ULs are given
- Other ongoing analysis desperately run to you.

Thanks for you attention!

Backup

Xu-Dong Yu

BESIII 实验上祭强子、QCD及新物理研讨会・兰州 Aug 23th, 2022

31

Systematic uncertainty

• Form factors $\Lambda_c^+ \to \Lambda$

TABLE II. Systematic uncertainties (in %) of the fitted parameters.

Parameter	Tracking&PID& Λ	Normalization	$lpha_{\Lambda}$	Total
$a_1^{f_\perp}$	0.6	0.5	0.1	0.8
$a_1^{ar{g}_\perp}$	6.0	7.2	2.8	9.8
r_{f_+}	0.1	0.5	0.7	0.9
$r_{g_{\perp}}$	0.3	0.1	0.6	0.7
r_{g_+}	0.3	1.5	0.1	1.5

Systematic uncertainty

Sources	$\mathcal{B}_{\Lambda^+_c o \Lambda \pi^+ \pi^- e^+ u_e}(\%)$	$\mathcal{B}_{\Lambda_c^+ o p K_{ m S}^0 \pi^- e^+ u_e} (\%)$
MC statistics	0.3	0.2
Number of ST Λ_c	0.4	0.4
BFs of the intermediate states	0.8	0.1
$p \; { m tracking}$		0.3
$p \; \mathrm{PID}$		0.2
π tracking	2.5	0.3
$\pi \ \mathrm{PID}$	0.7	0.3
$e ext{ tracking } BESII$	0.5	0.1
e PID	re 2.8min	3.5
$\Lambda { m reconstruction}$	2.2	ry
$K^0_{ m S}$ reconstruction		3.1
$\stackrel{\sim}{\sim}\cos heta(e,\pi)$	1.4	1.4
$\cos heta(\mathrm{miss},\gamma)$	0.1	0.1
FSR recovery	0.2	0.2
$M(\Lambda \pi^+ \pi^- e(\pi)^+) / M(pK_{\rm S}^0 \pi^- e(\pi)^+)$		
Signal model	2.2	5.6
Total	5.2	7.5

• For $\Lambda_c^+ \to \Lambda \pi^+ \pi^- e^+ \nu_e$ mode, $N^{\text{eff}} \sim \mathcal{G}\left(N^{\text{eff}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}} \cdot \sigma\right)|_{\sigma=5.2\%}$

• For $\Lambda_c^+ \to p K_S^0 \pi^- e^+ \nu_e$ mode, $N^{\text{eff}} \sim \mathcal{G}\left(N^{\text{eff}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}}, \mathcal{B}^{\text{inter}} \cdot N^{\text{ST}} \cdot \varepsilon_{\text{MC}}^{\text{sig}} \cdot \sigma\right)|_{\sigma=7.5\%}$