Charmonium hadronic weak decay at BESIII

陶璐燕 南华大学

BESIII实验上粲强子、QCD及新物理研讨会 2022.08.21-2022.08.24

1

Rare decays of charmonium

Semileptonic weak decays

$$\psi \rightarrow D_q l \nu$$
, $\psi \rightarrow \overline{D}^{0/*} l^+ l^-$

Two-body hadronic weak decays

$$J/\psi \to D_s^- \pi^+/K^+ + c.c., J/\psi \to D_s^{(*)+} \rho^-/K^- + c.c., ...$$

C/P violation decays

 $J/\psi \to \gamma\gamma, \gamma V, VV, PP$

Lepton flavor violation decays

$$J/\psi \rightarrow e\mu, e\tau, \mu\tau$$

Outline

Motivation

• Overview of recent charmonium hadronic weak decays

- Search for the weak decay $J/\psi \to D_S^- \rho^+$, $\overline{D}{}^0 \overline{K}{}^{*0}$
- Search for the weak decay $J/\psi \to \overline{D}{}^0\pi^0, \overline{D}{}^0\eta, \overline{D}{}^0\rho^0, D^-\pi^+, D^-\rho^+$
- Search for the weak decay $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$

Motivation

- BEPCII: The double-ring collider with high luminosity, Center-of-mass energy: 2.9 - 4.9 GeV
- > BESIII: Collected the world largest J/ψ , ψ (3686) data samples.

Motivation

- With the large statistic events collected at BESIII, which provides the opportunity to search for the charmnoium weak decays.
- Predicted to be unobservable in SM, but the branching fraction may be enhanced in the presence of New Physics.
 (as large as 10⁻⁵ 10⁻⁶, can be marginally measured by BESIII)
- Searching for these decays not only tests the SM prediction but also probes new physics theories beyond the SM.

 $J/\psi \rightarrow D_S^- \rho^+, \overline{D}{}^0 \overline{K}{}^{*0}$ PRD 89(2014)071101

- With Standard Model Factorization model: 10⁻⁹ – 10⁻¹⁰
- New Physics: 10⁻⁵ 10⁻⁶ Topo color model Minimal Supersymmetric model Two-Higgs-double model

 $\succ \frac{Br(J/\psi \to D_s \rho)}{Br(J/\psi \to D_s \pi)} \approx 4.2$

Int.J.Mod.Phys.A 14 (1999) 937-946

$$\succ \frac{Br(J/\psi \to D_s \rho)}{Br(J/\psi \to D_s \pi)} \approx 6.3$$

Eur.Phys.J.C 55 (2008) 607-613

 $J/\psi \rightarrow D_{S}^{-}\rho^{+}, \overline{D}^{0}\overline{K}^{*0}$ PRD 89(2014)071101

Event selection

- ► Good charged track: $|V_{xy}| < 2 \text{ cm}$ $|V_z| < 20 \text{ cm}$ $|cos\theta| < 0.93$
- ≻ NGood=4
- Particle identification (dE/dx +TOF)

 $K^{\pm}: CL_K > CL_{\pi} \&\&CL_K > CL_p$

- π^{\pm} : $CL_{\pi} > CL_{K} \& \& CL_{\pi} > CL_{p} \& \& CL_{\pi} > CL_{e}$
- e[±]: $CL_e > CL_\pi \&\&CL_e > CL_K$, e/p>0.8, $|\cos\theta| < 0.8$

> Photon:

 $|\cos\theta| < 0.8(0.86 < |\cos\theta| < 0.92), E_{\gamma} > 25(50) MeV$ for barrel(endcap) NPhoton $\ge 2, \theta_{c\gamma} > 10^{\circ}, 0 \le TDC \le 14$

$$\gg \pi^0$$
 reconstruction: 1-C: $\chi^2 < 200$

$$> J/\psi \to D_s^- \rho^+, D_s^- \to \phi e^- \nu_e, \phi \to K^+ K^-, \rho^+ \to \pi^0 \pi^+$$
$$> J/\psi \to \overline{D}{}^0 \overline{K}{}^{*0}, \overline{D}{}^0 \to K^+ e^- \overline{\nu}_e, \ \overline{K}{}^{*0} \to K^- \pi^+$$

 $J/\psi \rightarrow D_S^- \rho^+, \overline{D}{}^0 \overline{K}{}^{*0}$ PRD 89(2014)071101

 $J/\psi \to D_S^- \rho^+, \overline{D}{}^0 \overline{K}{}^{*0}$ PRD 89(2014)071101

$$I/\psi \rightarrow D_S^- \rho^+, \overline{D}{}^0 \overline{K}{}^{*0} \text{ prd 89(2014)071101}$$

 $\gg \mathcal{B}(J/\psi \rightarrow D_S^- \rho^+) < 1.3 \times 10^{-5}$

 $\succ \mathcal{B}(J/\psi \to \overline{D}{}^{0}\overline{K}{}^{*0}) < 2.5 \times 10^{-6}$

 $J/\psi \rightarrow D_S^- \pi^+, D_S^- \rho^+$

- > Ongoing analysis of $J/\psi \rightarrow D_S^- \pi^+ + c.c.$ and $J/\psi \rightarrow D_S^- \rho^+ + c.c.$
- > With full data of 10.1B J/ψ events, expect to improve the branching fractions.
- > The analysis will be published in 2023.

arXiv:1912.05983

Decay	$\begin{array}{c} \text{Predict } \mathcal{B} \\ (\times 10^{-10}) \end{array}$	$\begin{array}{c} \text{Data} \\ (\times \ 10^8) \end{array}$	ℬ (× 10 ^{−4})	Exp.sensitivity (use full data) $(imes 10^{-6})$
$J/\psi \to D_S^- \pi^+ + c. c.$	2.00 ~ 8.74	0.577	1.3[1]	9.9
$J/\psi \rightarrow D_S^- \rho^+ + c.c.$	12.60 ~ 50.50	2.250	0.13[2]	2.0

[1] Phys. Lett. B 663(2008) 297.[2] Phys. Rev. D 89(2014) 071101.

(a) $J/\psi \to \overline{D}{}^0\pi^0$, $\overline{D}{}^0\eta$ and $\overline{D}{}^0\rho^0$ (b) $J/\psi \to D^-\pi^+$ and , $D^-\rho^+$

- \succ c → u/s processes such as $J/\psi \rightarrow D^0 e^+ e^-$, $J/\psi \rightarrow D^0 K^0$, and $J/\psi \rightarrow D_s^- \rho^+$ and $J/\psi \rightarrow D^0 K^{*0}$ have been studied at BESII/BESIII;
- → More $c \rightarrow d$ processes such as $J/\psi \rightarrow \overline{D}{}^{0}\pi^{0}$, $\overline{D}{}^{0}\eta$, $\overline{D}{}^{0}\rho^{0}$, $D^{-}\pi^{+}$, $D^{-}\rho^{+}$ have not reported yet; Searching for weak decays of charmonium to single D mesons provides tests of standard model theory and serves as a probe of new physics.
- > Multiple models¹²³ predict the order of branching fraction at $10^{-10} 10^{-12}$.

¹EPJC55 607 , ² Int. J. Mod. Phys. A 14, 937(1997), ³ Int. J. Mod. Phys. A30, 1550094 (2015)

$$I/\psi \to \overline{D}{}^0\pi^0, \overline{D}{}^0\eta, \overline{D}{}^0\rho^0, D^-\pi^+, D^-\rho^+$$

Event selection

BAM-384

- > Good charged track: $|V_{xy}| < 1 \text{ cm}$ $|V_z| < 10 \text{ cm}$ $|cos\theta| < 0.93$
- Particle identification (dE/dx +TOF)
 - $K^{\pm}: CL_K > CL_{\pi}, CL_K > 0$
 - $\pi^{\pm}: CL_{\pi} > CL_{K}, CL_{\pi} > 0$
 - e[±]: $CL_e > CL_\pi \&\&CL_e > CL_K$, $CL_e > 0.001$, e/p>0.8

> Photon:

$$\begin{split} |\cos\theta| &< 0.8(0.86 < |\cos\theta| < 0.92), \quad E_{\gamma} > 25(50) \text{ MeV for barrel(endcap)} \\ \theta_{c\gamma} &> 10^{\circ}, \quad 0 \leq \text{TDC} \leq 14 \\ &> \pi^{0} \text{ reconstruction: } 1\text{-C: } \chi^{2} < 200 \\ &> J/\psi \rightarrow \overline{D}^{0}M, \quad \overline{D}^{0} \rightarrow K^{+}e^{-}\overline{\nu_{e}}, \quad M \rightarrow \pi^{+}\pi^{-}(\rho^{0}), \quad \gamma\gamma(\pi^{0}, \eta) \\ &> J/\psi \rightarrow D^{-}M^{+}, \quad D^{-} \rightarrow K_{S}^{0}e^{-}\overline{\nu_{e}}, \quad K_{S}^{0} \rightarrow \pi^{+}\pi^{-}, \quad M^{+} \rightarrow \pi^{+}(\rho^{+}) \end{split}$$

The distributions of recoiling invariant mass.

 $I/\psi \rightarrow \overline{D}{}^0\pi^0, \overline{D}{}^0\eta, \overline{D}{}^0\rho^0, D^-\pi^+, D^-\rho^+$

- Bayesian approaches
- > The upper limit of number of signal at the 90% C.L: 9.2, 5.3, 13.1, 5.6, 4.8

 $J/\psi \rightarrow \overline{D}{}^0\pi^0, \overline{D}{}^0\eta, \overline{D}{}^0\rho^0, D^-\pi^+, D^-\rho^+$

BAM-384

> With full data of 10.1B J/ψ events, expect to improve the branching fractions.

 \succ The analysis will be published in 2023.

arXiv:1912.05983

Decay	$\begin{array}{c} \textbf{Predict } \boldsymbol{\mathcal{B}} \\ (\times \ \mathbf{10^{-10}}) \end{array}$	$\begin{array}{c} \text{Data} \\ (\times \ 10^8) \end{array}$	В (× 10 ⁻⁶)	Exp.sensitivity (use full data) $(imes 10^{-6})$
$J/\psi \to \overline{D}{}^0\pi^0 + c.c$	0.24 ~ 0.055	2.250	3.2[1]	0.48
$J/\psi \to \overline{D}{}^0\eta + c.c$	0.016 ~ 0.070		4.7[1]	0.72
$J/\psi \to \overline{D}{}^0 \rho^0 + c.c$	0.18 ~ 0.22		5.1[1]	0.77
$J/\psi \to D^-\pi^+ + c.c$	0.08 ~ 0.55		1.2[1]	0.21
$J/\psi \rightarrow D^- \rho^+ + c.c.$	0.42 ~ 2.20		2.3[1]	0.35

[1] Y.H. Yang, C.W Wang, Search for the J/ψ weak decays. BESIII-BAM-00384.

$\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$ arxiv: 2207.10877

- A thorough study of the production and decay processes of baryons will provide a clearer insight into the structure of hadrons, the underlying physics, the mechanism and the fundamental interactions, and such processes may be more sensitive to new physics beyond the SM.
- Searches for purely baryonic weak ψ(3686) decays involving a charmed baryon Λ_c⁺ in the final state have never previously been performed.
 SM : B(ψ(3686)→ Λ_c⁺Σ̄⁻ + c.c.) ~ 10^{-10 [1]} [1] Chin.Phys.Lett. 28 071301 BSM: B(ψ(3686)→ Λ_c⁺Σ̄⁻ + c.c.) ~ 10⁻⁵ 10⁻⁶.

$\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$ arxiv: 2207.10877

Event selection

- \succ Good charged track of $Λ_c^+$: $|V_{xy}| < 1$ cm $|V_z| < 10$ cm |cosθ| < 0.93
- > Good charged track of $\overline{\Sigma}^-$: $|V_{xy}| < 10 \text{ cm}$ $|V_z| < 20 \text{ cm}$ $|\cos\theta| < 0.93$
- Particle identification (dE/dx +TOF)

 $K^{\pm}: \ CL_{K} > CL_{\pi} \&\&CL_{K} > CL_{p}$ $\pi^{\pm}: \ CL_{\pi} > CL_{K} \&\&CL_{\pi} > CL_{p}$ $p/\bar{p}: \ CL_{p} > CL_{K} \&\&CL_{p} > CL_{\pi}$

> Photon:

 $|\cos\theta| < 0.8(0.86 < |\cos\theta| < 0.92), E_{\gamma} > 25(50)$ MeV for barrel(endcap)

 $\theta_{c\gamma} > 10^{\circ}$, $0 \le \text{TDC} \le 14$

- \succ π⁰ reconstruction: 1-C: χ^2 < 200
- $\blacktriangleright \psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^-, \, \overline{\Sigma}^- \rightarrow \overline{p} \pi^0 \, \text{ PHSP}$

 $\Lambda_c^+ \rightarrow p K^- \pi^+$ Amplitude analysis model

Analysis strategy: Blinded method

 $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$ arxiv: 2207.10877

Summary

- ▶ BESIII collaboration has performed studies on charmoium rare decay and the upper limit of branching fractions (@90% C.L) are obtained, with $(225.3 \pm 2.8) \times 10^6 J/\psi$ events taken at \sqrt{s} =3.097 GeV and $(448.1\pm 2.9) \times 10^6 \psi$ (3686) events taken at \sqrt{s} =3.686 GeV. PRD 89(2014)071101
 - $Br(J/\psi \to D_S^- \rho^+) < 1.3 \times 10^{-5}, Br(J/\psi \to \overline{D}{}^0 \overline{K}{}^{*0}) < 2.5 \times 10^{-6}$

•
$$Br(J/\psi \to \overline{D}{}^{0}\pi^{0} + c.c) < 3.2 \times 10^{-6}$$

 $Br(J/\psi \to \overline{D}{}^{0}\eta + c.c) < 4.7 \times 10^{-6}$
 $Br(J/\psi \to \overline{D}{}^{0}\rho^{0} + c.c) < 5.1 \times 10^{-6}$ BAM-384
 $Br(J/\psi \to D^{-}\pi^{+} + c.c) < 1.2 \times 10^{-6}$
 $Br(J/\psi \to D^{-}\rho^{+} + c.c) < 2.3 \times 10^{-6}$

- $Br(\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.) < 1.3 \times 10^{-5}$ arxiv: 2207.10877
- > With full data of 10.1B J/ψ events, with improve the upper limit by 1-3 orders of magnitude.

Summary

 \blacktriangleright Predicted branching fractions and expected sensitivities with a sample of 10.1B J/ψ events and 3.0B ψ (3686) events.

	Decay type	Example	exp. sensitivity	predicted \mathcal{B} [7–10]	-
			$(\times 10^{-6})$	$(\times 10^{-10})$	arXiv:1912.05983
$c \rightarrow s$	$D_{(s)}P$	$J/\psi \to D_s^- \pi^+$	9.9	$2.00 \sim 8.74$	-
		$J/\psi ightarrow D^0 K^0$	13.0	$0.36 \sim 2.80$	
	$D_{(s)}V$	$J/\psi \to D_s^- \rho^+$	2.0	$12.60 \sim 50.50$	
		$J/\psi ightarrow D^0 K^{*0}$	0.38	$1.54 \sim 10.27$	
	$D^*_{(s)}V$	$J/\psi \to D_s^{*-}\rho^+$	1.7	52.60	
$c \rightarrow d$	$D_{(s)}P$	$J/\psi \to D_s^- K^+$	9.8	$0.16 \sim 0.55$	-
		$J/\psi \to D^-\pi^+$	0.21	$0.08 \sim 0.55$	
		$J/\psi ightarrow D^0\eta$	0.72	$0.016 \sim 0.070$	
		$J/\psi ightarrow D^0 \eta'$	0.25	$0.003 \sim 0.004$	
		$J/\psi \to D^0 \pi^0$	0.48	$0.024 \sim 0.055$	
	$D_{(s)}V$	$J/\psi \rightarrow D_s^- K^{*+}$	5.4	$0.82 \sim 2.79$	- 1 1 1
		$J/\psi \to D^- \rho^+$	0.35	$0.42 \sim 2.20$	These weak decays
		$J/\psi ightarrow D^0 ho^0$	0.77	$0.18 \sim 0.22$	can also be searched
		$J/\psi ightarrow D^0 \omega$	0.35	$0.16 \sim 0.18$	for in expected 3.0B
		$J/\psi ightarrow D^0 \phi$	0.22	$0.41 \sim 0.65$	h(2696) overts
	$D^*_{(s)}V$	$J/\psi \rightarrow D_s^{*-}K^{*+}$	4.5	2.6	$\psi(3000)$ events.
		$J/\psi \to D^{*-}\rho^+$	0.083	2.8	
		$J/\psi \to D^{*-}K^{*+}$	0.027	9.6	- 01

