

Charmonium semi-leptonic weak decay at BESIII

Zhi-Jun Li

2022.8.21 - 2022.8.24

Lanzhou

lizhj37@mail2.sysu.edu.cn

Introduction $\square \text{ Search for } \psi \to D^- l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_s^{(*)-} l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_0 l^+ l^- + c.c.$ □ Summary

Semi-leptonic weak decay of charmonium

□ Calculation fro ✓ Kinematically	$\checkmark \psi \to D^- l^+ v_l + c. c.$					
Theoretical model	QCDSR $(\times 10^{-11})$	CLFQ (× 10 ⁻¹¹)	BSW ($\times 10^{-11}$)	CCQM ($\times 10^{-11}$)	BSM ($\times 10^{-11}$)	$c \longrightarrow d$ $\bar{c} \longrightarrow \bar{c}$
$J/\psi \rightarrow D^- e^+ v_e$	$0.73^{+0.43}_{-0.22}$	5.1 – 5.7	$6.0^{+0.8}_{-0.7}$	1.71	$2.03^{+0.29}_{-0.25}$	
$J/\psi \to D^- \mu^+ v_\mu$	$0.71\substack{+0.42\\-0.22}$	4.7 — 5.5	$5.8^{+0.8}_{-0.6}$	1.66	$1.98\substack{+0.28\\-0.24}$	$\checkmark \psi \to D_s^{(1)} l^+ v_l + c. d$
$J/\psi \to D_s^- e^+ v_e$	18^{+7}_{-5}	53 – 58	$104.0^{+9.0}_{-7.5}$	33	$36.7^{+5.2}_{-4.4}$	
$J/\psi \to D_s^- \mu^+ v_\mu$	17^{+7}_{-5}	55 — 57	$99.3^{+9.5}_{-6.5}$	32	$35.4^{+5.0}_{-4.3}$	$c \longrightarrow c$

D New physics beyond the stand model:

2022/8/23

Branching fraction could be enhanced by 2 or 3 orders of magnitude,

Phys. Lett. B 345, 483 (1995). Phys. Rev. D 60, 014011 (1999).

e.g. Top-color model, two-Higgs doublet model. Chin. Phys. C 36, 932 (2012).

> Weak decay of charmonium is a good prob to

test the SM theory or search for new physics beyond SM

BEPCII and BESIII

Charmonium at BESIII

Year	J/ψ events	$\psi(2S)$ events	
	(× 10°)	(× 10°)	
2009	224.0 ± 1.3	107.0 ± 0.8	
2012	$\textbf{1088.5} \pm \textbf{4.4}$	341.1 ± 2.1	
2017 – 2019	8774.0 ± 39.4	↓ _	
2021	_	~2300	
Total	$\textbf{10087} \pm \textbf{44}$	~2748.1	
J/ψ events @3.097 GeV: $\sim 1 \times 10^{10}$		Chin.Phys.C 46 (2022) 7, 07400	
✓ ₩(25) events @3.68	26 GeV ~ 2 × 10 ⁹	Chin Phys C 42 (2018) 2 023001	

- ✓ A real J/ ψ event at BESIII
- ✓ Drawn with Besvis,
- ✓ developed by Z.Y. You, S.H.Huang @SYSU,
 P.X. Long, Y. Zhang, etc @IHEP

https://docbes3.ihep.ac.cn/~offlinesoftware/index.php/Event_Display

2022/8/23

 A large charmonium sample to search for the rare weak decay

□ Introduction $\square \text{ Search for } \psi \to D^- l^+ v_l + c. c.$ $\square \text{ Search for } \psi \to D_s^{(*)-} l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_0 l^+ l^- + c.c.$ □ Summary

2022/8/23

7

 ρ^+

Event selection

 $J/\psi \rightarrow D^- e^+ v_e + c.c.$

JHEP06(2021)157 **BAM-459** Base on full J/ψ data @3.097 GeV

$J/\psi \rightarrow D^- e^+ v_e + c.c.$

Background and signal study

JHEP06(2021)157 BAM-459 Base on full J/ψ data @3.097 GeV

Two main backgrounds: (1) Gamma conversion with *e* misidentified as $\pi/K: J/\psi \to \rho\pi \to \gamma\gamma\pi\pi \to \gamma e^+e^-\pi\pi$; (2) π/K misidentified as $e: J/\psi \to \gamma\eta(1405) \to \gamma KK^0\pi \to \gamma\pi\pi\pi K$

- > Define $U_{miss} = E_{miss} c |\vec{p}_{miss}|$
- $\checkmark \text{ Neutrino missing-energy: } E_{miss} = E_{J/\psi} E_{D^-} E_{e^+}$
- ✓ Neutrino missing-momentum: $\vec{p}_{miss} = \vec{p}_{J/\psi} \vec{p}_{D^-} \vec{p}_{e^+}$
- If there are signals in real data, it will have a peak around 0 in U_{miss}

✓ $PDF_{total} = \sum PDF_{sig}^{i} + poly(c_{0})$ ✓ $BF(J/\psi \to D^{-}e^{+}\nu_{e} + c.c.) = \frac{N_{signal}}{N_{J/\psi} \times \epsilon \times BF(D^{-} \to K^{+}\pi^{-}\pi^{-})}$ where signal efficiency $\epsilon = (29.93 \pm 0.10)\%$, which is determined from MC samples and N_{signal} is determined from fitting.

✓ No excess of events is observed above the background.

 $J/\psi \rightarrow D^- e^+ v_e + c.c.$

Uncertainty and upper limit

Sources	Relative uncertainties
Tracking	4.0
Particle ID	4.0
Signal MC model	3.0
$E_{\gamma}^{\rm tot}$ requirement	2.1
E/p requirement	0.3
$ \vec{p}_{\rm miss} $ requirement	0.3
BF of the $D^- \to K^+ \pi^- \pi^-$ decay	1.7
Number of J/ψ events	0.5
Total	7.0

✓ Summary of systematic uncertainties (%).

> B(J/ψ → D⁻e⁺ν_e + c.c.) < 7.1 × 10⁻⁸ at 90% CL
 > The most sensitive result of charmonium weak decay

JHEP06(2021)157 BAM-459 Base on full J/ψ data @3.097 GeV

✓ $PDF_{total} = \sum PDF_{sig}^{i} + poly(c_{0})$ ✓ $BF(J/\psi \to D^{-}e^{+}v_{e} + c.c.) = \frac{N_{signal}}{N_{J/\psi} \times \epsilon \times BF(D^{-} \to K^{+}\pi^{-}\pi^{-})}$ where signal efficiency $\epsilon = (29.93 \pm 0.10)\%$, which is determined from MC samples and N_{signal} is determined from fitting. N_{signal}

$J/\psi \rightarrow D^-\mu^+ v_\mu + c.c.$

$J/\psi \rightarrow D^-\mu^+ v_\mu \operatorname{vs} J/\psi \rightarrow D^- e^+ v_e$

- $\succ \mu/e$ will be Similar in standard model.
- $\succ \mu/e$ will be different beyond the standard model.
- Some experiments have found some deviations in muon between electron, like muon g-2, B meson weak decay with a μ
 Phys. Rev. Lett. 126.141801 Nature Phys., 2022, 18 (3): 277-282
- Charmonium weak decay with a μ has never been searched before

- \succ In $J/\psi \rightarrow D^- \mu^+ v_\mu$
- MDC, EMC, TOF can not identify μ/π well
- Muon with low momentum can't have hit information in MUC
- MUC also does not help much in selecting muon in $J/\psi \rightarrow D^- \mu^+ v_\mu$
- Large μ/π mis-identification hadron backgrounds from J/ ψ decay

$J/\psi \rightarrow D^-\mu^+ v_\mu + c.c.$

Reply to PSM Ongoing

Backgrounds study

□ Introduction $\square \text{ Search for } \psi \to D^- l^+ v_l + c.c.$ $\Box \text{ Search for } \psi \to D_s^{(*)-} l^+ v_l + c. c.$ $\square \text{ Search for } \psi \to D_0 l^+ l^- + c.c.$ □ Summary

 $J/\psi \rightarrow D_s^{(*)-}e^+v_e^++c.c.$

Event selection

PRD, 2014, 90(11): 112014. BAM-96 Base on J/ψ data @3.097 GeV in 2009

Rec Model	signal events	efficiency(%)
$D_s^- \to K^+ K^- \pi^-$	24457 ± 174	24.46 ± 0.17
$D_s^- \to K_s^0 K^-$	29898 ± 188	29.90 ± 0.19
$D_s^- \to K^+ K^- \pi^- \pi^0$	11075 ± 126	11.08 ± 0.13
$D_s^- \to K_s^0 K^- \pi^+ \pi^-$	13744 ± 118	13.74 ± 0.12

■ Efficiency of $J/\psi \rightarrow D_s^- e^+ v_e + c.c.$ (simulation of signal MC in each mode: 1×10^5) $_{2022/8/23}$

Rec Mode	signal events	efficiency(%)
$D_s^- \to K^+ K^- \pi^-$	16594 ± 169	16.59 ± 0.17
$D_s^- \to K_s^0 K^-$	19622 ± 167	19.62 ± 0.17
$D_s^- \to K^+ K^- \pi^- \pi^0$	7402 ± 145	7.40 ± 0.15
$D_s^- \to K_s^0 K^- \pi^+ \pi^-$	8201 ± 108	8.20 ± 0.11

■ Efficiency of $J/\psi \rightarrow D_s^{*-}e^+v_e + c.c.$ (simulation of signal MC in each mode: 1×10^5)

 $J/\psi \rightarrow D_s^{(*)-}e^+v_e^+ + c.c.$

Signal study

(a) $D_s^- \rightarrow K^+ K^- \pi^-$ (b) $D_s^- \rightarrow K^+ K^- \pi^- \pi^0$ (c) $D_s^- \rightarrow K_S K^-$ (d) $D_s^- \rightarrow K_S K^- \pi^+ \pi^-$ PRD, 2014, 90(11): 112014. BAM-96 Base on J/ψ data @3.097 GeV in 2009

 \checkmark No excess of events is observed in 2. 24 \times 10⁸ J/ ψ

 $J/\psi \rightarrow D_s^{(*)-}e^+v_e^+ + c.c.$

Uncertainty and upper limit

PRD, 2014, 90(11): 112014. **BAM-96** Base on J/ψ data @3.097 GeV in 2009

> Uncertainty	of J/ψ -	$\rightarrow D_s^- e^+ v_e$	+ c.c.		Upper limi	t of $J/\psi ightarrow D_s^{(*)-}e^+v$	_e + c.c.	_
Sources\modes	$K^+K^-\pi^-$	$K^+K^-\pi^-\pi^0$	$K^0_S K^-$	$K^0_S K^- \pi^+ \pi^-$		$J/\psi ightarrow D_s^- e^+ u_e$	$J/\psi ightarrow D_s^{*-} e^+ u_e$	-
Reconstruction ϵ	6.8	16.2	16.6	18.6	$ar{N}^{ m up}_{ m total}$	244	335	-
$\mathcal{B}(D_s^- \to X)$	3.9	11.1	4.0	6.6	$\sigma_{\rm total}$	31	43	$N_{\rm total}^{\rm up}$
Background shape	2.3	2.4	3.2	2.9	$_{\rm \lambda}$ total	275	270	$\mathcal{B} < \frac{1}{(1 - \sigma^{\text{sys}})N}$
Fitting range	0.3	0.4	0.5	0.6	N _{total}	275	378	$(1 - O_{\text{common}})^{IV} J/\psi$
MC statistic	0.7	1.2	0.6	0.9	$\sigma_{ m common}^{ m sys}$	3.3%	3.9%	
Total	0 0	10.9	17 /	20.0	$N_{I/m}$	2.25	$\times 10^{8}$	
	8.2	19.8	17.4	20.0	$\mathcal{B}(90\% \text{ C.L.})$	$< 1.3 \times 10^{-6}$	$< 1.8 \times 10^{-6}$	
Sources\modes	$K^+K^-\pi^-$	$K^+K^-\pi^-\pi^0$	$K^0_S K^-$	$K^0_S K^- \pi^+ \pi^-$				D *- +
Reconstruction ϵ	6.8	16.2	16.6	18.6	J/ψ	$\rightarrow D_s e' v_e + c.c.$	$[J]_{\psi}$	$\rightarrow D_s^+ e^+ v_e^- + c.c.$
$\mathcal{B}(D_s^- \to X)$	3.9	11.1	4.0	6.6			0.002	
Background shape	2.5	2.5	2.7	3.2				
Fitting range	0.2	0.6	0.4	0.4	2 ^{0.002}			
MC statistic	1.0	1.9	0.9	1.4	0.001			
Total	8.3	20.0	17.4	20.1	0 200	400 600 800 1000 N _{total}	0 200 400	0 600 800 1000 N _{total}
2022/8/2	23				$ > \mathcal{B}(J/\psi - \mathcal{B}(J$	$ \rightarrow D_s^- e^+ v_e + c.c.) < $ $ \rightarrow D_s^{*-} e^+ v_e + c.c.) < $	1.3×10^{-6} at 90% 1.8×10^{-6} at 90%	$\frac{CL}{CL}$

$J/\psi \rightarrow D_s^- e^+ v_e + c. c.$ with full J/ψ data

Beginning Will use full J/ψ data @3.097 GeV

More data sample for $J/\psi \rightarrow D_s^- e^+ v_e^- + c.c.$

- ▶ Prediction from SM: $10^{-9} 10^{-10}$
- > Number of J/ ψ number: ~10¹⁰
- Very close to the standard model
- Cover most of the remaining region of the new physics model
- If use full J/ψ data, some of the backgrounds can no longer be ignored
- ✓ New result of $\mathcal{B}(J/\psi \to D_s^- e^+ v_e + c. c.)$ with more J/ψ data will come soon.
- ✓ Study of $\psi(2S) \rightarrow D_s^- e^+ v_e + c.c.$ will also begin soon.

✓ Some backgrounds should be veto if open full data now

eg. γ conversion to $e^+e^$ and one of e will be mis-identified as π eg. $J/\psi \rightarrow K^+K^-\pi^+\pi^-\pi^0$ backgrounds and one of π will be mis-identified as e

D Introduction $\square \text{ Search for } \psi \to D^- l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_s^{(*)-} l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_0 l^+ l^- + c. c.$ □ Summary

 $\psi \rightarrow D^0 e^+ e^- + c.c.$

Event selection and signal study

Phys.Rev.D 96 (2017) 11, 111101 BAM-237 Base on J/ψ data @3.097 GeV in 2009, 2012 and ψ(2S) data @3.686 GeV in 2009, 2012

 $\psi \rightarrow D^0 e^+ e^- + c.c.$

Phys.Rev.D 96 (2017) 11, 111101

BAM-237

Event selection and signal study

Base on J/ψ data @3.097 GeV in 2009, 2012 and ψ(2S) data @3.686 GeV in 2009, 2012

✓ Summary of systematic uncertainties (%).

✓ The likelihood curve and UL at 90% CL.

 $\succ B(J/\psi \to D^0 e^+ e^- + c. c.) < 8.5 \times 10^{-8}$ at 90% CL $\succ B(\psi(2S) \to D^0 e^+ e^- + c. c.) < 1.4 \times 10^{-7}$ at 90% CL

(Only base on J/ ψ data @3.097 GeV in 2009,2012 which is 1310.6×10^6 and $\psi(2S)$ data @3.686 GeV in 2009, 2012 which is $448.1\times10^6)$

2022/8/23

➤ The study of $\psi \to D^0 l^+ l^- + c. c.$ with more data will begin soon.

D Introduction $\square \text{ Search for } \psi \to D^- l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_s^{(*)-} l^+ v_l + c.c.$ $\square \text{ Search for } \psi \to D_0 l^+ l^- + c.c.$ **D** Summary

Summary

- ✓ J/ ψ weak decay is rare ($10^{-9} \sim 10^{-12}$) but allowed in SM
- ✓ If new physics exists, it can be enhanced by 2 or 3 orders of magnitude
- ✓ Charmonium semi-leptonic weak decay: $c \rightarrow d, c \rightarrow s, c \rightarrow u$
- ✓ Test the SM theory or search for new physics beyond SM

$$\begin{array}{l} \checkmark \ \mathcal{B}(J/\psi \to D^- e^+ v_e + c. c.) < 7.1 \times 10^{-8} \text{ at } 90\% \text{ CL } (\sim 10^{10} \text{ J/\psi}) \\ \checkmark \ \mathcal{B}(J/\psi \to D_s^- e^+ v_e + c. c.) < 1.3 \times 10^{-6} \text{ at } 90\% \text{ CL } (\sim 10^8 \text{ J/\psi}) \\ \checkmark \ \mathcal{B}(J/\psi \to D_s^{*-} e^+ v_e + c. c.) < 1.8 \times 10^{-6} \text{ at } 90\% \text{ CL } (\sim 10^8 \text{ J/\psi}) \\ \checkmark \ \mathcal{B}(J/\psi \to D^0 e^+ e^- + c. c.) < 8.5 \times 10^{-8} \text{ at } 90\% \text{ CL } (\sim 10^9 \text{ J/\psi}) \\ \checkmark \ \mathcal{B}(\psi(2S) \to D^0 e^+ e^- + c. c.) < 1.4 \times 10^{-7} \text{ at } 90\% \text{ CL } (\sim 10^8 \psi(2S)) \end{array}$$

✓ More results with full data now will come soon. (~1 × 10¹⁰ J/ ψ and ~3 × 10⁹ ψ (2*S*)) 2022/7/15

