

Rare decay and NP search with Hyperons at BESIII

Yangu Li (李彦谷)

Peking University & University of Chinese Academy of Sciences

BESIII实验上粲强子、QCD及新物理研讨会 August 23, 2022

Introduction

Hyperon: baryon with one or more *s*-quark, but without any heavy quarks

Role in HEP frontier problems

- Hadron structure and QCD test
- Precision measurement of CKM matrix
- CP violation
- Lepton flavor universality
- NP models
- ...

Experimental status

- Many results not updated for decades
- Mainly conducted by fixed-target experiments
- BESIII is making massive contributions

Decay	Last updated	Collaboration
$\Sigma^+ \to \Lambda e^+ \bar{\nu}_e$	1969	HBC (BNL)
$\Sigma^+ \rightarrow p e^+ e^-$	1969	HBC (BNL)
$\Sigma^+ \rightarrow n e^+ \nu_e$	1974	HBC (BNL)
$\Xi^0 \to p e^- \bar{\nu}_e$	1974	HBC (BNL)
$\Lambda \to p e^- \bar{\nu}_e$	1983	SPEC (CERN)
$\Sigma^- \rightarrow n e^- \bar{\nu}_e$	1983	SPEC (CERN)
$\Sigma^+ \to p\gamma$	1995	E761 (Fermilab)
$\Xi^0 \to \Lambda e^+ e^-$	2007	NA48 (CERN)
$\Xi^0\to \Sigma^+ e^- \bar\nu_e$	2007	NA48 (CERN)
$\Lambda \to \pi^+ e^-$	2015	CLAS
$\Sigma^+ \to p \mu^+ \mu^-$	2018	LHCb
$\Lambda o p \mu^- \bar{\nu}_\mu$	2021	BESIII
$\Xi^-\to \Xi^0 e^- \bar\nu_e$	2021	BESIII
$\Sigma^- \rightarrow p e^- e^-$	2021	BESIII
$\Lambda \rightarrow invisible$	2022	BESIII

Hyperon rare decay at BESIII

Semileptonic decays

- Study of $\Lambda \rightarrow p\mu^- \bar{\nu}_{\mu}$
- Search for $\Xi^- \rightarrow \Xi^0 e^- \bar{\nu}_e$
- Search for $\Xi^0 \rightarrow \Sigma^- e^+ \nu_e$
- Study of $\Sigma^+ \to \Lambda e^+ \nu_e$

Radiative decays

- Study of $\Lambda \rightarrow n\gamma$
- Study of $\Sigma^+ \rightarrow p\gamma$

BNV & LNV decays

- Search for $\Sigma^- \rightarrow p e^- e^-$
- Search for $\Xi^0 \to K^{\pm} e^{\mp} + c.c.$

Invisible decays

• Search for $\Lambda \rightarrow invisible$

PRL 127, 121802 (2021) PRD 104, 072007 (2021) arXiv:2208.09221 BAM-576 (ongoing)

arXiv:2206.10791 BAM-559 (ongoing)

PRD 103, 052001 (2021) BAM-625 (ongoing)

PRD 105, 071101 (2022)

Techniques for hyperon research

Datasets

- 10 billion $J/\psi \to B\bar{B}$
- 2.7 billion $\psi(2S) \rightarrow B\overline{B}$

Double-tag method

- Absolute BF measurement
- Kinematic constraints
- Cancel ST related sys. uncertainty

Helicity formalism

• Extract form factor & decay asymmetry via angular distributions

(Semi-)blind procedure

• Avoid personal bias

J/ψ Decay mode	Events $(\times 10^6)$	$oldsymbol{\psi}(2S)$ Decay mode	Events $(\times 10^6)$
$\Lambda\overline{\Lambda}$	18.9 <u>+</u> 0.9	$\Lambda\overline{\Lambda}$	1.03 ± 0.03
$\Sigma^0 \overline{\Sigma}{}^0$	11.7 ± 0.3	$\Sigma^0 \overline{\Sigma}{}^0$	0.66 ± 0.03
$\Sigma^+\overline{\Sigma}^-$	10.7 ± 0.4	$\Sigma^+\overline{\Sigma}^-$	0.64 ± 0.02
$\Sigma(1385)^{-}\overline{\Sigma}^{+}(+c.c.)$	3.1 <u>+</u> 0.5	$\Xi^0\overline{\Xi}^0$	0.78 <u>+</u> 0.03
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}(+c.c.)$	11.6 <u>+</u> 0.5	Ξ−Ξ+	0.6 ± 0.1
$\Xi^0\overline{\Xi}^0$	11.7 ± 0.4	$\Omega^-\overline{\Omega}^+$	0.153 <u>+</u> 0.008
Ξ−Ξ+	9.7 ± 0.8		

Challenges in hyperon research

Low momentum final particles

- Efficiency loss / noise
- e/π , μ/π identification
- Systematic uncertainty
- Dominant BKG from hadronic decays
 - BF about $10^3 \sim 10^4$ larger than signal

Neutron reconstruction

- Interaction with EMC: scattering, annihilation, fission, absorption...
- Efficiency, identification and reconstruction issues
- Unprecise MC simulation by Geant4

Physical model for MC generator

• SM / NP calculations translated to decay amplitude

Semileptonic decays

PRD 100, 076008 (2019)

	Help understand t	the interplay between	weak and strong interactions
\sim			

SU(3) symmetry breaking

- Theoretical studies still rely on SU(3) method due to light quarks
- Indications of breaking for a few percents

Transition form factor

- Predictable at SU(3) limit
- Poorly measured in experiments

CKM matrix element

• Precision for $|V_{us}|$ could be comparable with kaon decays

Lepton flavor universality

• $R^{\mu e} = \Gamma(B_1 \rightarrow B_2 \mu^- \bar{\nu}_\mu) / \Gamma(B_1 \rightarrow B_2 e^- \bar{\nu}_e)$

Decay modes	$g_1(0)/f_1(0)$	$f_2(0)/f_1(0)$
$\Xi^- \to \Sigma^0 \ell^- \bar{\nu}_\ell$	$1.22\pm0.05^{\rm a}$	2.609 ^b
$\Xi^- \to \Lambda^0 \ell^- \bar{\nu}_\ell$	0.25 ± 0.05	0.085 ^b
$\Xi^0 \to \Sigma^+ \ell^- \bar{\nu}_\ell$	1.22 ± 0.05	2.0 ± 0.9
$\Lambda^0 \to p \ell^- \bar{\nu}_\ell$	0.718 ± 0.015	1.066 ^b
$\Sigma^0 \to p \ell^- \bar{\nu}_\ell$	$-0.340 \pm 0.017^{\mathrm{a}}$	-1.292^{b}
$\Sigma^- \to n \ell^- \bar{\nu}_\ell$	-0.340 ± 0.017	-0.97 ± 0.14
$\Sigma^-\to \Sigma^0 e^- \bar\nu_e$	$\frac{1}{2}[(1.2724 \pm 0.0023) + (-0.340 \pm 0.017)]^{a}$	0.534 ^b
$\Sigma^- \rightarrow \Lambda^0 e^- \bar{\nu}_e$	$(-0.01 \pm 0.10)^{-1}$	1.490^{b}
$\Sigma^0 \to \Sigma^+ e^- \bar{\nu}_e$	$-\frac{1}{2}[(1.2724 \pm 0.0023) + (-0.340 \pm 0.017)]^{a}$	0.531 ^b
$\Sigma^+ \rightarrow \Lambda^0 e^+ \nu_e$	$(-0.01 \pm 0.10)^{-1a}$	1.490^{b}
$\Xi^- \rightarrow \Xi^0 e^- \bar{\nu}_e$	-0.340 ± 0.017^{a}	-1.432^{b}
$n \to p e^- \bar{\nu}_e$	1.2724 ± 0.0023	1.855 ^b

PRL 92, 251803 (2004)

Decay	Rate	g_1/f_1	V_{us}
Process	(μsec^{-1})		
$\Lambda \to p e^- \overline{\nu}$	3.161(58)	0.718(15)	0.2224 ± 0.0034
$\Sigma^- \to n e^- \overline{\nu}$	6.88(24)	-0.340(17)	0.2282 ± 0.0049
$\Xi^- \to \Lambda e^- \overline{\nu}$	3.44(19)	0.25(5)	0.2367 ± 0.0099
$\Xi^0 \to \Sigma^+ e^- \overline{\nu}$	0.876(71)	1.32(+.22/18)	0.209 ± 0.027
Combined			0.2250 ± 0.0027

PRL 114, 161802 (2015)

	$\Lambda \to p$	$\Sigma^- \to n$	$\Xi^0\to \Sigma^+$	$\Xi^- \to \Lambda$
Expt.	0.189(41)	0.442(39)	0.0092(14)	0.6(5)
SM-NLO	0.153(8)	0.444(22)	0.0084(4)	0.275(14)

Semileptonic decays

Study of $\Lambda \rightarrow p\mu^-\overline{\nu}_{\mu}$ PRL 127, 121802 (2021)

- First measurement of absolute BF to be $(1.48 \pm 0.21_{stat.} \pm 0.08_{syst.}) \times 10^{-4}$
- Precision improved by about 30% after half a century
- Obtain $R^{\mu e} = 0.178 \pm 0.028$, consistent with SM
- Obtain $\mathcal{A}_{CP} = (0.02 \pm 0.14_{stat.} \pm 0.02_{syst.})$, no CPV found
- Study of $\Lambda \rightarrow pe^- \bar{v}_e$ is ongoing, capable to extract form factors

Search for $\Xi^- \to \Xi^0 e^- \overline{\nu}_e$ PRD 104, 072007 (2021)

- Upper limit of BF determined to be 2.59×10^{-4} @ 90% C. L.
- Constraint improved by one order of magnitude

Semileptonic decays

• Search for $\Xi^0 \to \Sigma^- e^+ \nu_e$

arXiv: 2208.09221

- Violate the $\Delta S = \Delta Q$ selection rule
 - One basic assumption in Cabibbo's weak theory
 - Allowed by SM via second-order weak interaction
- Could be a new probe for SU(3) symmetry breaking
- Upper limit of BF to be 1.6×10^{-4} @ 90% C. L.
- Constraint improved by one order of magnitude

• Study of $\Sigma^+ \to \Lambda e^+ \nu_e$

- First measurement of absolute BF
- Test the SM prediction of $R = \frac{\Gamma(\Sigma^- \to \Lambda e^- \overline{\nu}_e)}{\Gamma(\Sigma^+ \to \Lambda e^+ \nu_e)}$
 - Weinberg for the absence of second-class currents
 - Lee & Yang for the strangeness-conserving weak current transforming as an isotopic vector
- Challenging to push sensitivity up to ${\sim}2 \times 10^{-5}$

 Ξ^0

Radiative decays

- A unique probe for strong/weak/EM interactions
- Description complicated by the presence of strong force
 - A: parity-conserving (M1) amplitude
 - **B**: parity-violating (E1) amplitude

$$T = G_F \frac{e}{\sqrt{4\pi}} \epsilon_{\nu} \bar{u}(p') (\boldsymbol{A} + \boldsymbol{B}\gamma_5) \sigma_{\mu\nu} q_{\mu} u(p) \qquad \qquad \alpha_{\gamma} = \frac{2Re(\boldsymbol{A} * \boldsymbol{B})}{|\boldsymbol{A}|^2 + |\boldsymbol{B}|^2}$$

Puzzle of Hara's theorem

- Parity-violating amplitude should vanish at SU(3) limit
- Decay asymmetry parameter α_{γ} calculated to be $\sim \pm 0.2$
- Yet large negative α_{γ} are observed in Σ^+ and Ξ^0 decays
- Still controversial in theory to date

Helicity method at BESIII

• Extract α_{γ} via joint angular distributions

$B_i \rightarrow \gamma B_f$	$BF(10^{-3})$	α_{γ}
$\Lambda \to \gamma n$	1.75 ± 0.15	—
$\Sigma^+ \to \gamma p$	1.23 ± 0.05	-0.76 ± 0.08
$\Sigma^0 \to \gamma n$	—	BESIII ongoing
$\Xi^0 o \gamma \Lambda$	1.17 ± 0.07	-0.70 ± 0.07
$\Xi^0 o \gamma \Sigma^0$	3.33 ± 0.10	-0.69 ± 0.06
$\Xi^- ightarrow \gamma \Sigma^-$	0.127 ± 0.023	1.0 ± 1.3
$\Omega^- o \gamma \Xi^-$	< 0.46(90% C.L.)	_

$$\begin{split} &\omega(\xi, \alpha_{J/\psi}, \Delta\Phi, \alpha_{-}, \alpha_{\gamma}) = 1 + \alpha_{\psi} cos^{2} \theta_{\Lambda} \\ &+ \alpha_{-} \alpha_{\gamma} [sin^{2} \theta_{\Lambda}(n_{1,x}, n_{2,x} - \alpha_{\psi} n_{1,y}, n_{2,y}) + (cos^{2} \theta_{\Lambda} + \alpha_{\psi}) n_{1,z}, n_{2,z}] \\ &+ \alpha_{-} \alpha_{\gamma} \sqrt{1 - \alpha_{\psi}^{2}} cos(\Delta\Phi) sin \theta_{\Lambda} cos \theta_{\Lambda}(n_{1,x}, n_{2,z} + n_{1,z}, n_{2,x}) \\ &+ \sqrt{1 - \alpha_{\psi}^{2}} sin(\Delta\Phi) sin \theta_{\Lambda} cos \theta_{\Lambda}(\alpha_{-} n_{1,y} + \alpha_{\gamma} n_{2,y}) \end{split}$$

Radiative decays

• Study of $\Lambda \to n\gamma$

arXiv: 2206.10791

- Absolute BF as $(0.832 \pm 0.038_{stat.} \pm 0.054_{syst.}) \times 10^{-3}$
- Improved precision, smaller than PDG value by 5.6σ
- First determination of $\alpha_{\gamma} = -0.16 \pm 0.10_{stat.} \pm 0.05_{syst.}$
- Provide essential inputs to theoretical models

• Study of $\Sigma^+ \to p\gamma$

BAM-559 (ongoing)

- First measurement of absolute BF
- Capable to improve the precision of α_{γ}

2022/8/23

BNV & LNV decays

- **BNV:** required by baryon-antibaryon asymmetry in the universe
 - NP models allow $\Delta(B L) = 0 \text{ or } 2 \text{ decays}$
- **LNV:** Majorana neutrinos $\rightarrow 0\nu\beta\beta$ decays $\rightarrow \Delta L = 2$
 - Provide additional constraint from collider experiment
- **Search for** $\Sigma^- \to pe^-e^-$ PRD 103, 052001 (2021)
 - Upper limit of BF determined to be 6.7×10^{-5} @ 90% C. L.
 - Conducted using 1.3B J/ψ events
 - The inclusive decay $\Sigma^- \rightarrow \Sigma^+ + X$ is also searched for
- Search for $\Xi^0 \to K^{\pm}e^{\mp} + c.c.$ BAM-625 (ongoing)
 - Sensitivity could reach 10^{-6}

Invisible decays

- Candidate for dark matter and baryon asymmetry
 - Dark matter \leftrightarrow "dark sector" \leftrightarrow baryon asymmetry

Neutron lifetime puzzle

- Beam method $(n \rightarrow pe^- \bar{v}_e)$ and storage method $(n \rightarrow X)$
- Discrepancy may indicate $\mathcal{B}(n \rightarrow invisible) \sim 1\%$

• Search for $\Lambda \rightarrow invisible$

PRD 105, 071101 (2022)

- First search of baryon invisible decay
- Upper limit of BF to be 7.4×10^{-5} @ 90% C. L.
- Data-driven correction for *n* deposited energy at EMC

V

Summary & Outlook

Summary

- Studies of rare hyperon decays at BESIII are reviewed.
- Many NP models can be examined and constrained via hyperon decays.
- Various analysis techniques are applied to solve the challenges.

Outlook

- Full J/ψ and $\psi(2S)$ datasets now available, more analyses on the go.
- The FCNC searches in hyperons are still absent
 - Strongly suppressed in SM ($\mathcal{B} \sim 10^{-12}$)
 - Enhanced in some NP models up to 10^{-6}
 - Prospects: Front. Phys. 12, 121301 (2017)
 - Methodology: <u>Dong Xiao's talk at NPG workshop 2021</u>

Decay mode	Current data $\mathcal{B}(\times 10^{-6})$	Sensitivity \mathcal{B} (90% C.L.) (×10 ⁻⁶)	Type
$\Lambda \rightarrow n e^+ e^-$ –		< 0.8	
$\Sigma^+ \to p e^+ e^-$	< 7	< 0.4	
$\Xi^0 \to \Lambda e^+ e^-$	7.6 ± 0.6	< 1.2	
$\Xi^0 \to \varSigma^0 e^+ e^-$	_	< 1.3	-
$\Xi^-\to \Sigma^- e^+ e^-$	_	< 1.0	Type A
$\varOmega^-\to \Xi^- e^+ e^-$	_	< 26.0	
$\Sigma^+ \to p \mu^+ \mu^-$	$(0.09\substack{+0.09\\-0.08})$	< 0.4	
$\Omega^-\to \Xi^-\mu^+\mu^-$	_	< 30.0	
$\Lambda \to n \nu \bar{\nu}$	_	< 0.3	
$\Sigma^+ \to p \nu \bar{\nu}$	_	< 0.4	
$\Xi^0\to A\nu\bar\nu$	_	< 0.8	
$\Xi^0 \to \Sigma^0 \nu \bar{\nu}$	-	< 0.9	Type B
$\Xi^- \to \Sigma^- \nu \bar{\nu}$	_	_*	
$\Omega^- \to \Xi^- \nu \bar{\nu}$	_	< 26.0	

Thanks for your attention!

Yangu Li

2022/8/23