

Search for charged lepton flavor violating decays at BESIII

Jing-Shu Li 李静舒

Sun Yat-sen University 中山大学

lijsh53@mail2.sysu.edu.cn

Jing-Shu Li

BESIII实验上粲强子、QCD及新物理研讨会(兰州大学)

2022.8.23

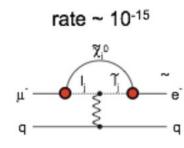
Motivation

- Introduction to some theoretical models
- **Search for charged lepton flavor violating decay** $J/\psi \rightarrow e\tau$
- Search for charged lepton flavor violating decay $J/\psi \rightarrow e\mu$

Neutrino Flavor Violation is observed !

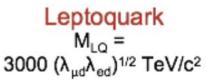
 Models may enhance LFV effects up to a detectable level, such as leptoquark, Compositeness,
 Supersymmetry, Heavy Z' and Anomalous boson Coupling model.

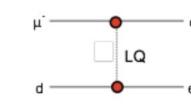
Motivation



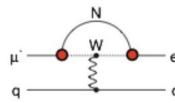
Since LFV decay is forbidden in the SM, the observation of any LFV decay would be a signal of new physics beyond SM.

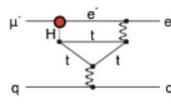
• In SM, Lepton Flavour is conserved for zero degenerate ν masses and now we have clear indication that ν s have finite


mass.

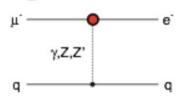

Supersymmetry

Compositeness


Λ_c ~ 3000 TeV

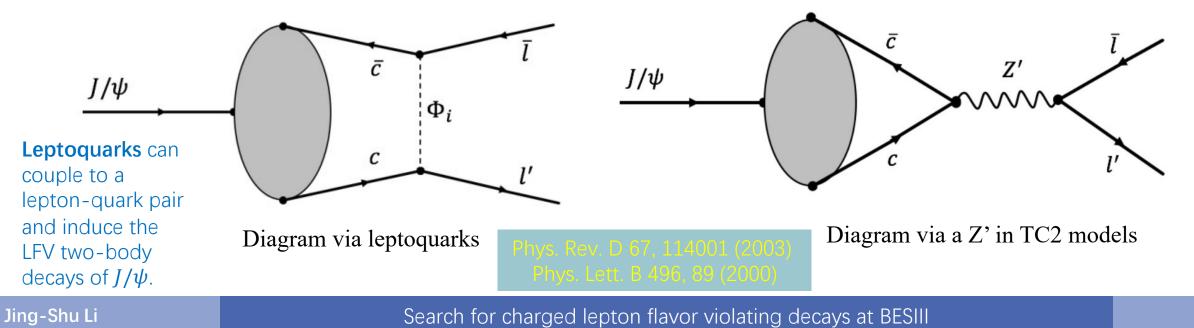

Heavy Neutrinos

 $|U_{\mu N}U_{e N}|^2 \sim 8 \times 10^{-13}$


Second Higgs Doublet

 $g(H_{\mu e}) \sim 10^{-4} g(H_{\mu \mu})$

M_{Z'} = 3000 TeV/c²



Motivation

In the charged lepton sector, LFV is heavily suppressed in the Standard Model.

$$BR(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 \sqrt{10^{-54}} \qquad \mu \longrightarrow \nu_e$$

Neutrinoless muon decay

• Both experimental searches and upper-limit predictions, including μ , τ LFV decays, π . *K* LFV decays and ϕ . I/ψ two-body LFV decays. etc.

mn r

e

W

Z' model for CLFV

• Z', a neutral vector boson with the same couplings to fermion-antifermion as the Z, but with a larger mass. • μ to e conversion $u_{,d}$ $u_{,d}$

 $R = \frac{G_F^2 \alpha^3 m_{\mu}^5 Z_{\text{eff}}^4 |F_p|^2 Q_{e\mu}^2}{2\pi^2 \Gamma_{\text{capt}} Z} \frac{M_Z^4}{M_{Z'}^4} \left[(2Z + N) \left(\frac{1}{2} - \frac{4}{3} s_W^2 \right) + (Z + 2N) \left(-\frac{1}{2} + \frac{2}{3} s_W^2 \right) \right]^2 \left[s_W^4 + \left(s_W^2 - \frac{1}{2} \right)^2 \right]$

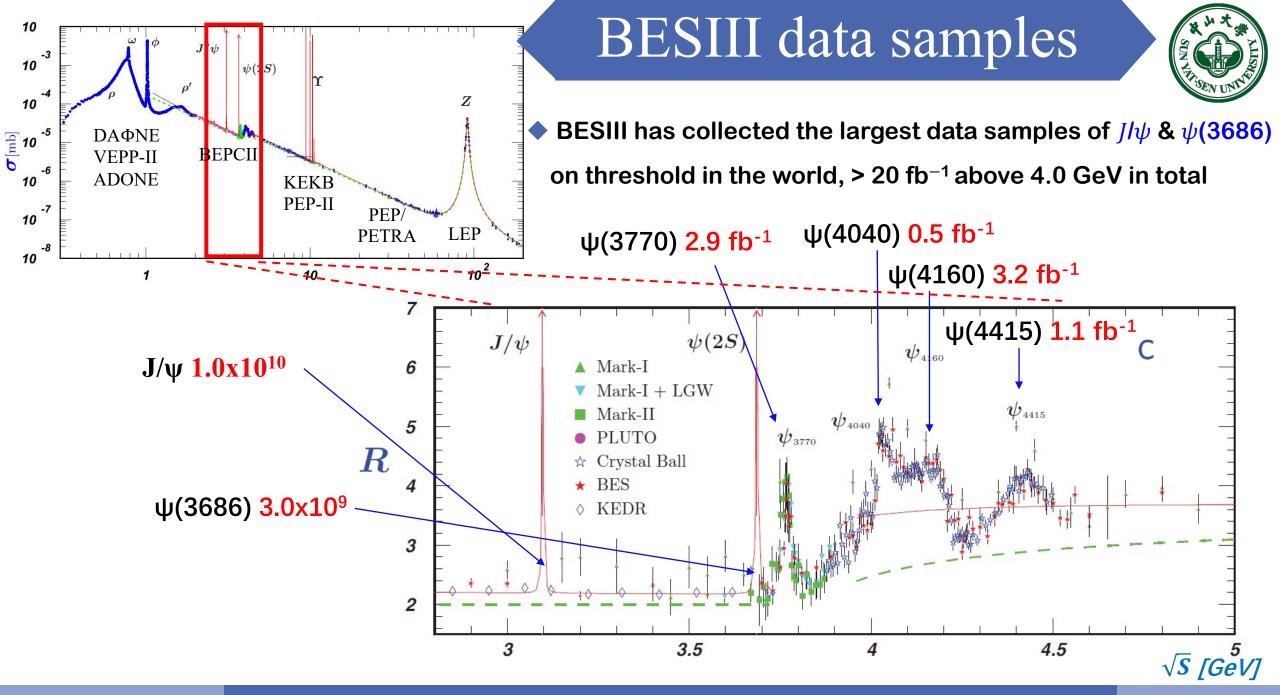
 G_F : the Fermi constant, α : the fine structure constant, m_{μ} : the muon mass

 Z_{eff}, F_p : nuclear parameters, Z: the atomic number, N: the number of neutrons in the nucleus S_w : the sine of the weak mixing angle

RPV Sneutrino model

_

- R-parity violating (RPV) SUSY allows terms that violate lepton number conservation and terms that violate baryon number conservation
- \diamond Assume the sneutrino resonance is a $\tilde{\nu}_{\tau}$, expected to be the lightest sneutrino in many SUSY models and it makes the coupling indices specific.


$$\mathcal{L}_{eff} = -\frac{1}{2} \underbrace{\lambda_{ijk}}_{ijk} \left(\tilde{\nu}_{iL} \overline{\ell}_{kR} \ell_{jL} + \tilde{\ell}_{jL} \overline{\ell}_{kR} \nu_{iL} + \tilde{\ell}_{kR}^* \overline{\nu}_{iR}^c \ell_{jL} - (i \leftrightarrow j) \right)$$

$$- \underbrace{\lambda'_{ijk}}_{ijk} \left(\tilde{\nu}_{iL} \overline{d}_{kR} d_{jL} + \tilde{d}_{jL} \overline{d}_{kR} \nu_{iL} + \tilde{d}_{kR}^* \overline{\nu}_{iR}^c d_{jL} - \tilde{d}_{kR}^* \overline{\ell}_{iR}^c d_{jL} \right)$$

$$- \underbrace{\tilde{\ell}_{iL} \overline{d}_{kR} \ell_{iL} - \tilde{u}_{jL} \overline{d}_{kR} \ell_{iL} - \tilde{d}_{kR}^* \overline{\ell}_{iR}^c u_{jL} \right) + \text{h.c.},$$

 ℓ :charged lepton u, d:up(down)-like quark tilde over a field indicates a superparticle field v: neutrino superscripts c denote charge conjugate fields Process Product of Couplings Limit on Couplings Product Experiment superscripts * : complex conjugate fields $\begin{array}{ll} d\bar{d} \rightarrow \tilde{\nu}_{i} \rightarrow e\mu & |\lambda_{i12}^{*}\lambda_{i11}'|, |\lambda_{i21}^{*}\lambda_{i11}'| \\ d\bar{d} \rightarrow \tilde{\nu}_{i} \rightarrow e\tau & |\lambda_{i13}^{*}\lambda_{i11}'|, |\lambda_{i31}^{*}\lambda_{i11}'| \\ d\bar{d} \rightarrow \tilde{\nu}_{i} \rightarrow \mu\tau & |\lambda_{i23}^{*}\lambda_{i11}'|, |\lambda_{i32}^{*}\lambda_{i11}'| \end{array}$ $\begin{vmatrix} |\lambda_{i12}\lambda_{i11}^{\prime*}|, |\lambda_{i21}\lambda_{i11}^{\prime*}| < 2.1 \times 10^{-8}\tilde{\nu}_{i}^{2} \\ |\lambda_{i13}\lambda_{i11}^{\prime*}|, |\lambda_{i31}\lambda_{i11}^{\prime*}| < 1.7 \times 10^{-4}\tilde{\nu}_{i}^{2} \\ |\lambda_{i23}\lambda_{i11}^{\prime*}|, |\lambda_{i32}\lambda_{i11}^{\prime*}| < 1.4 \times 10^{-4}\tilde{\nu}_{i}^{2} \end{vmatrix}$ $\mu \rightarrow e$ (Ti) $\tau \rightarrow e\eta$

 $\tau \rightarrow \mu \eta$

Motivation

• The cLFV decays of vector mesons $V \rightarrow l_i l_j$ are also predicted in various of extension models of SM:

 $\mathcal{B}(J/\psi \to e\mu)$ to $10^{-16} \sim 10^{-9}$ @ 90% C.L. $\mathcal{B}(J/\psi \to e(\mu)\tau)$ to $10^{-10} \sim 10^{-8}$ @ 90% C.L. Phys. Rev. D 63, 016003.
Phys. Rev. D 63, 016006
Phys. Rev. D 83, 115015
Phys. Lett. A 27, 1250172
Phys. Rev. D 94, 074023.
Phys. Rev. D 97, 056027

Experimental results before:

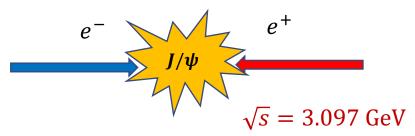
Decay mode	BESII UL	BESIII UL
Number of J/ψ	58×10^{6}	225.3×10 ⁶
$\mathcal{B}(J/\psi \to e\mu)$	$< 1.1 \times 10^{-6}$	$< 1.6 \times 10^{-7}$
$\mathcal{B}(J/\psi \to e\tau)$	$< 8.3 \times 10^{-6}$	-
$\mathcal{B}(J/\psi \to \mu \tau)$	$< 2.0 \times 10^{-6}$	-

Search for charged lepton flavor violating decay $J/\psi \to e\tau$

Jing-Shu Li

Search for charged lepton flavor violating decays at BESIII

Data samples


BOSS version: 7.0.5

Based on 10 billion data set: 1310.6M collected @2009+2012
 (sample I), 8774.01M collected @2017-2019 (sample II).

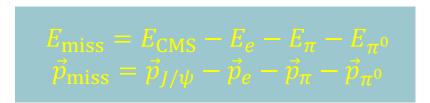
Decay chain	Generator	Generated
$J/\psi \rightarrow \omega f_2(1270), \omega \rightarrow \pi^0 \gamma, f_2(1270) \rightarrow \pi^+ \pi^-$	PHSP, VSP_PWAVE, TSS	5.8M
$J/\psi ightarrow \eta n ar n, \eta ightarrow \gamma \gamma$	PHSP	5.8M
$J/\psi ightarrow \pi^+\pi^-\pi^0$	OMEGA-DALITZ	29M
$J/\psi ightarrow ho \pi$	HELAMP	29M
$J/\psi ightarrow \pi^0 e^+ e^-$	PHSP	29M
$J/\psi ightarrow ar{p}n\pi^+$	PHSP	5.8M
$J/\psi \rightarrow K^* \bar{K^0}(K^* \rightarrow K^+ \pi^-) + c.c.$	HELAMP, VSS	11.6M

Generator and number of events list for exclusive MC samples of 2009 and 2012

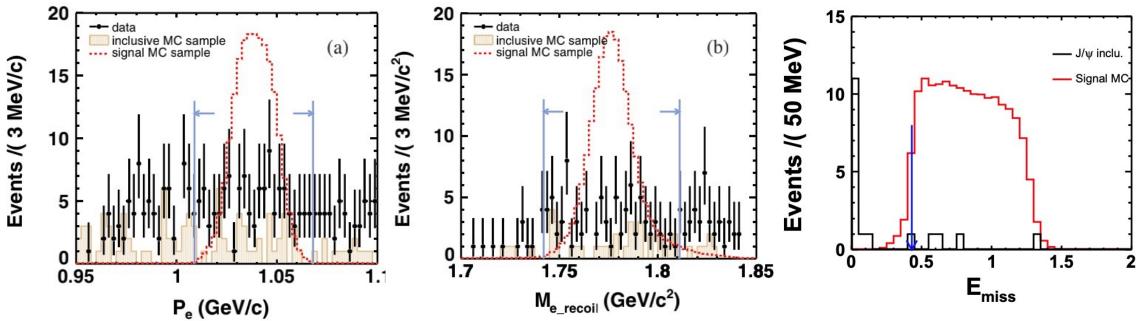
Decay chain	Generator	Generated
$J/\psi \rightarrow \omega f_2(1270), \omega \rightarrow \pi^0 \gamma, f_2(1270) \rightarrow \pi^+ \pi^-$	PHSP, VSP_PWAVE, TSS	19M
$J/\psi \rightarrow \rho \pi$ (include direct $\pi^+ \pi^- \pi^0$)	HELAMP, OMEGA-DALITZ	190M
$J/\psi ightarrow ar{p}n\pi^+$	PHSP	38M

Inclusive samples:
225 million @ 2009
1000 million @ 2012
4600 million @ 2018
4100 million @ 2019

• 1 million τ inclusive events with $J/\psi \rightarrow e\tau$ and τ inclusive decays to any decay channels


Generator and number of events list for exclusive MC samples of 2018 and 2019

Event Selection


 $\blacklozenge J/\psi \to e\tau, \tau \to \pi\pi^0 \nu$

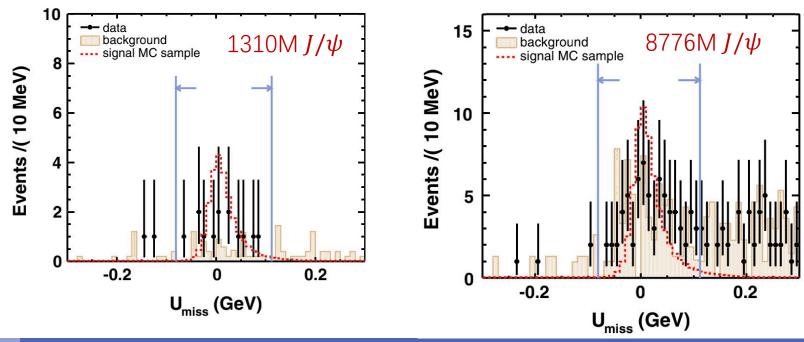
- Select one electron and one charged pion
- igstarrow At least two photon showers and one π^0

◆ The final-state electron from the process $J/\psi \rightarrow e\tau$ is monochromatic, therefore the momentum of the electron P_e and the recoiling mass against the electron M_{e_recoil}

• One undetected neutrino with missing energy $E_{miss} > 0.43 GeV$

Cut flow

The relative efficiency for each event selection criterion for 2018 and 2019


	Event selection criterion	Relative (18+19
Good charged track	$R_{xy} < 1$ cm, $R_z < 10$ cm, $ cos\theta < 0.8$ and $N_{charged} = 2$	57.78%
Good photon	$E_{\gamma} > 25(50)$ MeV for $ cos\theta < 0.80$ (0.86 $< cos\theta < 0.92$),	73.93%
	$0 \le t \le 14 (\times 50 ns)$ and $N_{\gamma} \le 2$	
PID	$Prob(e) > Prob(\pi, K, p)$ for electron	96.65%
	$Prob(\pi)$ > $Prob(e, K, p)$ for pion	96.32%
π^0 cut	$0.115 GeV < M_{\gamma\gamma} < 0.150 GeV, \chi^2_{1C} < 200 \text{ and } N_{\pi^0} = 1$	66.50%
Further PID for electron	E/p>0.8	99.47%
	$\frac{Prob(e)}{Prob(e)+Prob(\pi)} > 0.95$	95.32%
	87.07%	
	97.18%	
$E_{miss} > 0.43 GeV$		95.52%
	$-0.081 GeV < U_{miss} < 0.112 GeV$	95.55%
	19.37%	

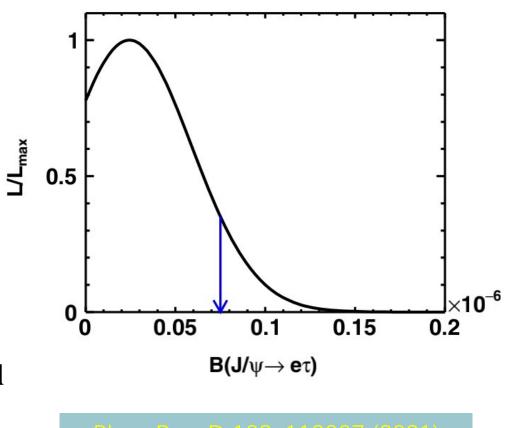
Background study

• The dominant background contaminations stem from the continuum process (e.g. radiative Bhabha) and from hadronic J/ψ decays such as $J/\psi \rightarrow \pi^+\pi^-\pi^0$

◆ U_{miss} = E_{miss} - c | P_{miss} |, The areas between the arrows represent the signal region.
 ◆ In total, 6.9 ± 1.9 (63.6 ± 13.2) background events are expected for the data sample I (II).

Search for charged lepton flavor violating decays at BESIII

Determination of upper limit at 90%
 confidence level (C.L.) with Bayesian method.
 Combined result:


 $\mathcal{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L.

Results

• The 1st submitted paper based on full 10 billion J/ψ data of BESIII

This result improves the previous

published limits by two orders of magnitude and comparable with the theoretical predictions.

Search for charged lepton flavor violating decay $J/\psi \rightarrow e\mu$

Jing-Shu Li

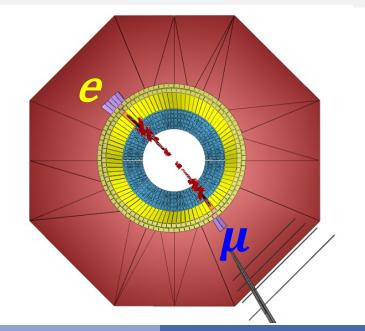
Search for charged lepton flavor violating decays at BESIII

Data samples

■ BOSS Version: 7.0.5 > Data: Full J/ψ $\psi(3770)$ $\chi_{c1}(1P)$ 3.080GeV data	Data size 09+17-19 (10 ⁶) 8998 2.93 fb ⁻¹ 458.21 pb ⁻¹ 168.58 pb ⁻¹	e^- J/ψ $\sqrt{s} = 3.097 \text{ GeV}$
≻ Signal MC: $J/\psi \rightarrow e\mu$	0.1+0.1+0.1	PHOTOS VLL
$\succ \text{ Exclusive MC} \qquad J/\psi \to ee \\ J/\psi \to \mu\mu \\ J/\psi \to \pi\pi \\ J/\psi \to KK \\ J/\psi \to pp \end{cases}$	133.8+5239 133.6+5230 0.33+12.90 0.64+25.10 4.75+1860	PHOTOS VLL PHOTOS VLL VSS VSS J2BB1
Continuum MC: $ee \rightarrow ee(\gamma)$ $ee \rightarrow \mu\mu(\gamma)$ Inclusive MC: Full J/ψ	81+526.1 0.3+1.9 230+8774	Babayaga Babayaga Evtgen & LundCharm

Search for charged lepton flavor violating decays at BESIII

Preliminary Selection


Good charged track:

- $|V_r| < 1.0 \ cm;$
- $|V_z| < 10.0 \ cm;$
- $|cos\theta| < 0.93;$
- $N_{charge}^{good} = 2, \Sigma Q = 0;$
- Two charged tracks $\Delta T \leq 1.0 \ ns$

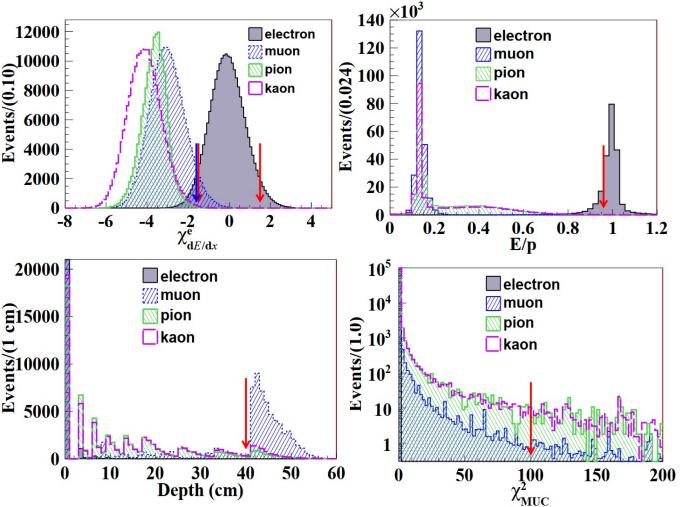
Good photon:

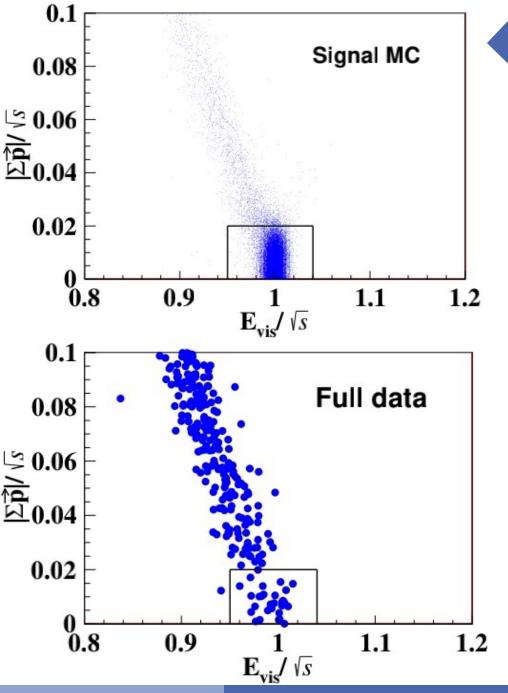
- Barrel ($|cos\theta| < 0.80$) $E_{\gamma 1} > 25 MeV$;
- Endcap ($0.86 < |cos\theta| < 0.92$) $E_{\gamma 2} > 50 MeV$;
- Gap $(0.80 < |cos\theta| < 0.86) E_{\gamma 3} > 50 MeV;$
- TDC time window [0, 700] ns;
- Angle with nearest charged track $> 20^{\circ}$;
- Reject the events with $N_{\gamma} > 0$

Particle ID:

- π : prob $(\pi) \ge 0$ && prob $(\pi) \ge$ prob(K);
- $K: \operatorname{prob}(K) \ge 0 \&\& \operatorname{prob}(K) \ge \operatorname{prob}(\pi);$
- $p: \operatorname{prob}(p) \ge 0 \&\& \operatorname{prob}(p) \ge \operatorname{prob}(K) \&\& \operatorname{prob}(p) \ge \operatorname{prob}(\pi)$

Event Selection


Each J/ψ candidate is reconstructed with two back-to-back good charged tracks, which will be further identified as electron and muon.


Electron identification :

- Not associated in the MUC
- $-1.5 < \chi^{e}_{dE/dx} < 1.5 \ (\chi^{e}_{dE/dx} \text{ is defined as the difference between measured and expected } dE/dx under the electron hypothesis normalized by the <math>dE/dx$ resolution)
- E/p > 0.96 (E is the deposite energy in the EMC and p is the modulus of the momentum from the MDC)

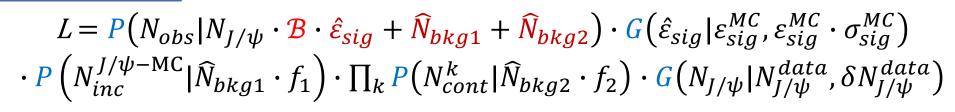
Muon identification :

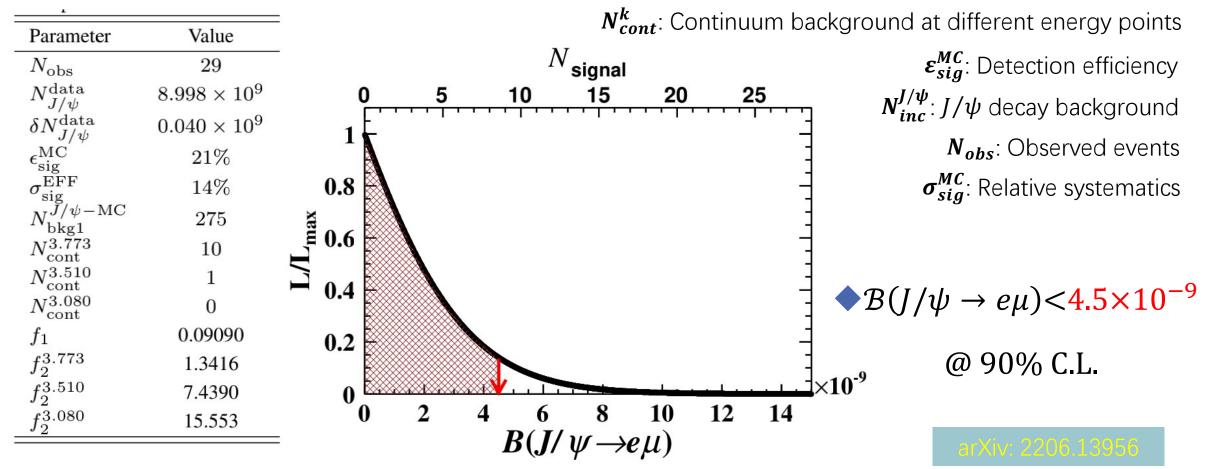
- $0.1 < E < 0.3 \text{ GeV}, \chi^e_{dE/dx} < -1.6$
- The penetration depth of the track in the MUC , > 40 cm
- Each candidate track must penetrate more than three layers in the MUC, and $\chi^2_{MUC} < 100$

Selection and Background study

- ♦ The signal region is defined with $|\sum \vec{p}|/\sqrt{s} \le 0.02$ and $0.95 \le E_{vis}/\sqrt{s} \le 1.04$
 - $|\Sigma \vec{p}|$: the magnitude of the vector sum of the momenta
 - E_{vis} : the total reconstructed energy of e and μ in the event
- J/ψ MC events $\rightarrow J/\psi$ decay background (N_{bkg1})
- ◆ ψ (3770), χ_{c1} (1*P*) and 3.080*GeV* data → Continuum background (N_{bkg2})
- The normalized is estimated to be $N_{bkg1}^{norm} =$
 - **24.8 \pm 1.5** and $N_{bkg2}^{norm} =$ **12.0 \pm 3.7**.
- By analyzing the full data, 29 candidate events are observed

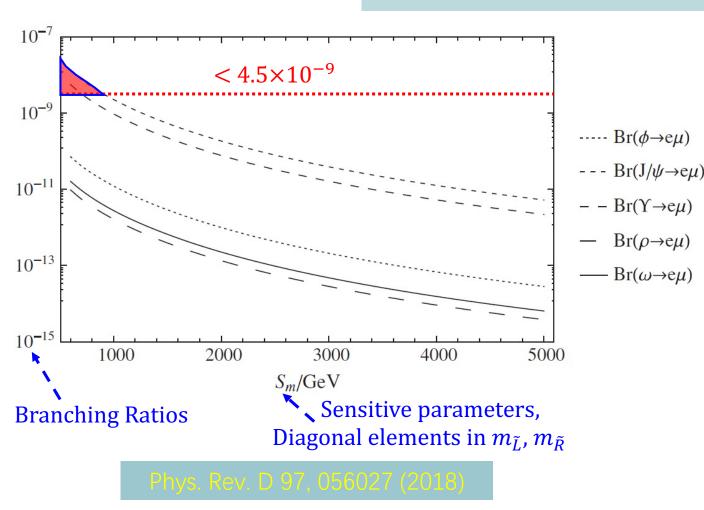
Systematic uncertainty




Sources	Δ_{sys} [%]
Tracking and PID	13
TOF timing	0.52
Photon veto	0.83
$ \Delta heta $ and $ \Delta \phi $	2.6
Total	14

- ◆ Control samples J/ψ(e⁺e⁻) → e⁺e⁻ and J/ψ → μ⁺μ⁻ are used to estimate the systematic uncertainties of tracking and PID of electron and muon, TOF timing, γ veto, and |Δθ| and |Δφ| requirement.
 ◆ They are added in quadrature to the total efficiency-related systematic
- They are added in quadrature to the total efficiency-related systematic uncertainty of 14%.

Upper limit



Results

$\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @ 90\%$ C.L.

Excluding the parameter space of some models, such as BLMSSM model, a
 supersymmetric model where baryon (B)
 and lepton (L) numbers are local gauge symmetries.

- Improves the previous published limits
 by a factor of more than 30 and comparable
 with the theoretical predictions
- The most precise result of CLFV search in heavy quarkonium systems

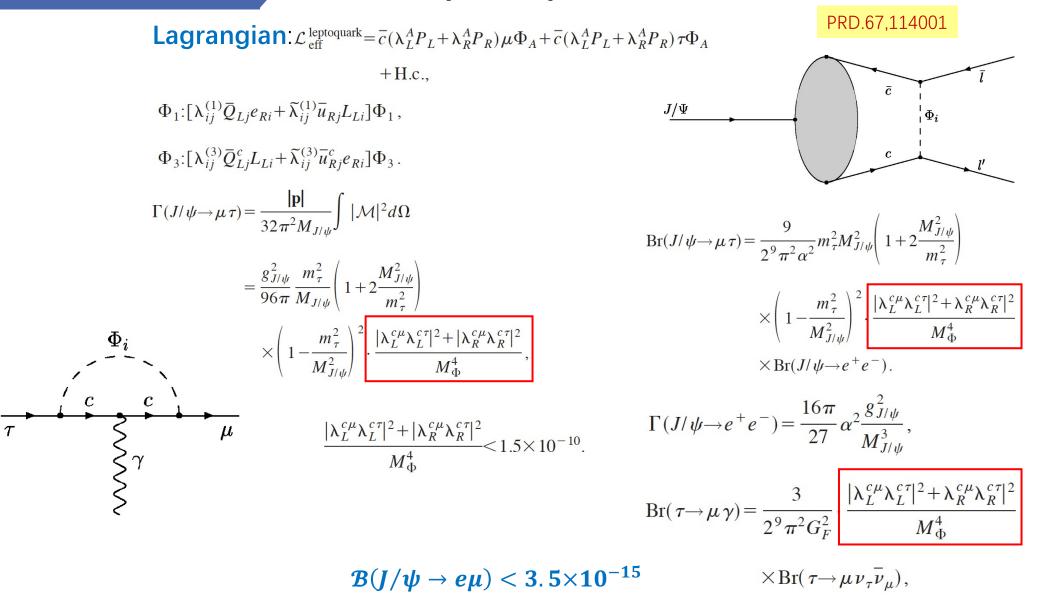
Some new physics models can inspire the CLFV decay rate up to a detectable level.

 \bullet The latest searching results for CLFV decays on J/ψ are reported.

• The UL is set to be $\mathcal{B}(J/\psi \rightarrow e\tau) < 7.5 \times 10^{-8}$ @ 90% CL.

◆ The UL is set to be $\mathcal{B}(J/\psi \rightarrow e\mu) < 4.5 \times 10^{-9}$ @ 90% CL, which is the most stringent result up to now.

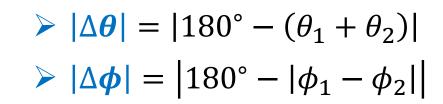
Thank you


Jing-Shu Li

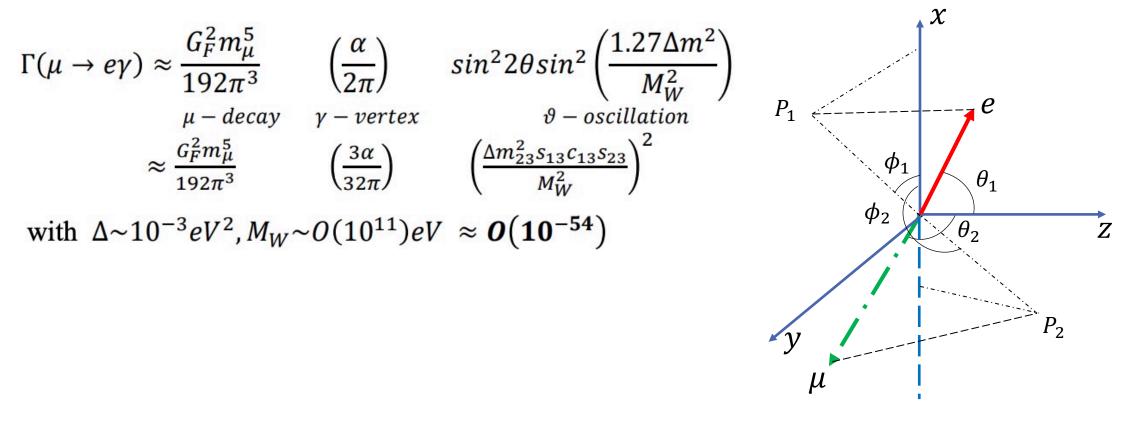
Search for charged lepton flavor violating decays at BESIII

24

Leptoquark model


Back up

Search for charged lepton flavor violating decays at BESIII


Back up

$JI\psi \rightarrow e\mu$ angle

CLFV in SM

Backup

 $JI\psi \rightarrow e\mu$ cut flow

Cut flow	Efficiency 2009 (%)	Efficiency 2017-2019 (%)
Generated(100000, 200000)	100	100
$N_{charged}^{good} = 2, \sum Q = 0$	88.00	87.27
$\Delta TOF \leq 1.0 \mathrm{ns}$	86.45	85.67
E/P > 0.5 for electron, $E/P < 0.5$ for muon	83.31	82.60
$E_{\gamma B} < 0.025 \text{ GeV}, E_{\gamma G} < 0.050 \text{ GeV}, E_{\gamma E} < 0.050 \text{ GeV}$	76.00	74.47
$N_{hits}^e = 0$ for electron in MUC	73.33	71.15
E/P > 0.96 for electron	60.34	59.09
$ \chi^{e}_{dE/dx} < 1.5$ for electron	55.37	53.37
$0.1 \text{ GeV} < E_{deposited} < 0.3 \text{ GeV}$ for muon	54.35	52.35
$0 < \chi^2_{MUC} < 100$ for muon	32.35	40.33
$d_{\mu} > 40 \mathrm{cm}$ for muon	27.38	30.06
$\chi^{e}_{dE/dx} < -1.6$ for muon	26.04	28.42
$ \Delta \theta < 1.2^\circ, \Delta \phi < 1.5^\circ$	24.21	24.96
$ \Sigma \vec{p} /\sqrt{s} \leq 0.02, \ 0.95 \leq E_{vis}/\sqrt{s} \leq 1.04$	20.67	21.20

 $\succ \chi^{e}_{dE/dx}$: difference between the measured and expected χ_{dedx} for the electron hypothesis.

 $> d_{\mu}$: penetration depth in MUC *NumLayers*: penetration layers *MaxHitsInLayer*: Max hits in one layer

Signal efficiency:
$$\varepsilon_{sig}^{MC} = \sum \epsilon_{sig}^{i} \times \frac{n^{i}}{N} = (21.18 \pm 0.13)\%$$

Backup

$J/\psi \rightarrow e\mu$ background

- J/ψ MC events $\rightarrow J/\psi$ decay background (N_{bkg1})
- $\psi(3770)$, $\chi_{c1}(1P)$ and 3.080 GeV data \rightarrow Continuum background (N_{bkg2})

Sample	Mode	Size 09+17-19 (M)	Survived	Scale factor	Normalized
	$J/\psi ightarrow e^+e^-$	133.8+5239	0+58	1/10.0	5.80 ± 0.76
	$J/\psi ightarrow \mu^+\mu^-$	133.6+5230	1+174	1/10.0	17.40 ± 1.32
Exclusive MC	$J/\psi ightarrow \pi^+\pi^-$	0.33+12.90	0+27	1/10.0	2.70 ± 0.52
	$J/\psi \to K^+K^-$	0.64+25.10	0+0	1/10.0	0
	$J/\psi ightarrow p^+p^-$	4.75+1860	0+0	1/10.0	0
Inclusive MC	$J/\psi ightarrow anything$	230+8774	0+6+9=15	8.2	1.83 ± 0.47
	$e^+e^- \to e^+e^-(\gamma)$	81+274.8+251.3	0	9.0	0
Continuum MC	$e^+e^- \to \mu^+\mu^-(\gamma)$	0.3+1.0+0.9	0+0+0	9.0	0
Data	$\psi(3770)$ data $ ightarrow$ 09	2.93 fb^{-1}	10	1.3416	13.42 ± 4.24
	$\chi_{c1}(1P)$ data $ ightarrow$ 18,19	458.21 pb^{-1}	1	7.4390	$\textbf{7.44} \pm \textbf{7.44}$
	3.080GeV data	224.04 + 877.52	0	15.5533	-

Back up

$JI\psi \rightarrow e\mu$ background

• The normalized background in the signal region N_{bkg1}^{norm} is calculated as, $N_{bkg1}^{norm} = N_{bkg1}^{J/\psi-MC} \cdot f_1, \qquad f_1 = \frac{N_{J/\psi}^{data}}{N_{L/\psi}^{MC}}$

- $N_{bkg1}^{J/\psi-MC}$: the number of J/ψ background decays in the J/ψ inclusive and exclusive MC samples
- $N_{J/\psi}^{data}$: the total number of J/ψ events in the data
- $N_{J/\psi}^{MC}$: the total number of equivalent J/ψ events in the J/ψ inclusive and exclusive MC samples The normalized number in the signal region is estimated to be $N_{bkg1}^{norm} = 24.8 \pm 1.5$.
- By assuming a 1/s energy-dependence of the cross sections, the normalized number of continuum backgrounds at the J/ψ peak, $N_{bkg2}^{norm,k}$, can be obtained by

$$N_{bkg2}^{norm,k} = N_{cont}^k \times f_2^k, \qquad f_2^k = \frac{\mathcal{L}_{J/\psi}}{\mathcal{L}_k} \times \frac{s_k}{s_{J/\psi}}$$

- N_{cont}^{k} : the number of background events survived in the signal region at the energy with index k
- $\mathcal{L}_k, \mathcal{L}_{J/\psi}$: the integrated luminosities at energies k and at the J/ψ peak The normalized number is estimated to be $N_{bkg2}^{norm} = 12.0 \pm 3.7$.

$$G_{BL} = SU(3)_C \bigotimes SU(2)_L \bigotimes U(1)_Y \bigotimes U(1)_B \bigotimes U(1)_L$$

BLMSSM

In the BLMSSM, the local B and L are spontaneously broken at the TeV scale. The superpotential of the BLMSSM is written as:

$$\mathcal{W}_{\text{BLMSSM}} = \mathcal{W}_{\text{MSSM}} + \mathcal{W}_{B} + \mathcal{W}_{L} + \mathcal{W}_{X}$$
$$(m_{\tilde{L}}^{2})_{ii} = (m_{\tilde{R}}^{2})_{ii} = S_{m}^{2}$$

Back up