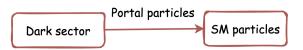
BSM particle searches at BESIII

Peicheng Jiang

Peking University

August 23, 2022


Outline

- 1. BSM particle searches at BESIII
- 2. Dark photon searches
 - Search for visible dark photons decays
 - Search for invisible dark photons decays
- 3. CP-odd light Higgs and ALP searches
 - Search for CP-odd light Higgs
 - Search for axion-like particles
- 4. Summary

BSM particle searches at BESIII

BSM particles:

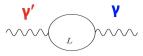
- Dark photon (DP), CP-odd Light Higgs, axion-like particle (ALP)...
- Predicted by BSM theories, eg. NMSSM, SUSY, string theory
- Provid a portal connecting SM particles to the dark sector and could be dark matter candidates

Searches performed at BESIII:

- The largest data samples of J/ψ (10 B) and ψ (3686) (2.7 B), and over 20 fb⁻¹ data above 4.0 GeV in total
- Based on a blind analysis to avoid possible bias
- Common statistic methods to extract the results (Bayesian, Profile-likelihood...)

Dark photon searches

Dark photon searches


Dark photon (γ' , A', U)

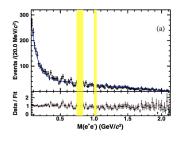
A spin-one boson associated with a new Abelian gauge symmetry $\mathrm{U}(1)_D$

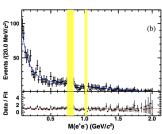
- Massless kind (not our topic in this talk)
 - $U(1)_D$ stays unbroken
 - Do not interact directly with SM
 - Can induce FCNC transitions, eg. $c \rightarrow u$

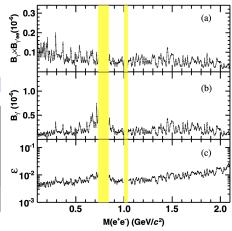
Massive kind

- $U(1)_D$ is spontaneously broken
- lacktriangle Kinetically mix with SM photon γ with strength ϵ
- lacksquare Visible decays into SM particles $(2m_e < m_{\gamma'} < 2m_\chi)$
- Invisible decays into DM $(m_{\gamma'} > 2m_\chi)$

Heavy Charged Leptons L (carry U(1)_d charge)

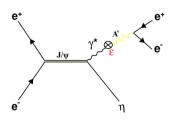

$$\mathcal{L} = -\varepsilon e J^{\mu} A'_{\mu}$$

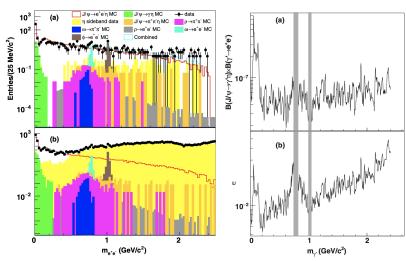

Search for dark photons in $J/\psi o \gamma' \eta'$, $\gamma' o e^+ e^-$


Phys. Rev. D 99, 012013 (2019)

- Using 1.3 billion J/ψ events
- $\blacksquare \mathcal{B}(J/\psi \to \gamma \eta') \sim 1 \times 10^{-3}$
- \blacksquare two η' decay modes $\eta' \to \gamma \pi^+ \pi^-$ and

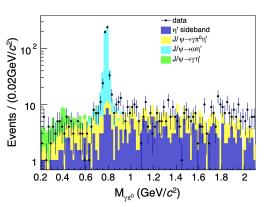
$$\eta'
ightarrow \pi^+ \pi^- \eta (\gamma \gamma) \ \ \epsilon <$$
 [3.4 $imes$ 10⁻³, 2.6 $imes$ 10⁻²]

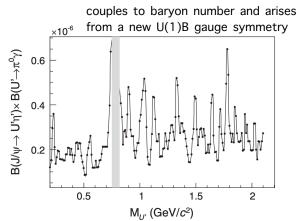




Search for dark photons in $J/\psi \to \gamma' \eta$, $\gamma' \to e^+ e^-$

- Using 1.3 billion J/ψ events
- two η decay modes $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$

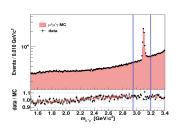


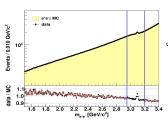

Phys. Rev. D 99, 012006 (2019)

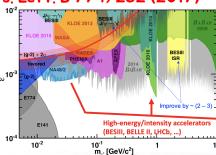
Search for dark photons in $J/\psi \to \gamma' \eta'$, $\gamma' \to \gamma \pi^0$

- Using 1.3 billion J/ψ events
- $\blacksquare \mathcal{B}(J/\psi \to \gamma \eta') \sim 1 \times 10^{-3}$

- Phys. Rev. D 102, 052005 (2020)
- \blacksquare η' reconstructed by $\eta' \to \pi^+\pi^-\eta(\gamma\gamma)$
- $lue{}$ Excluding the mass region around the ω peak (0.75 to 0.82 GeV/ c^2)

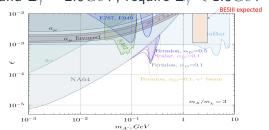

Peicheng Jiang BSM particle searches at BESIII August 23, 2022 6/14

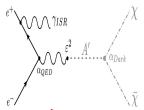

Search for visible dark photon decays using ISR


- Using 2.93 fb⁻¹ of data taken at $\sqrt{s} = 3.773$ GeV (17 fb⁻¹ coming)
- Using untagged ISR photon (predicted by calculating the missing momentum)
- Search for $e^+e^- \to \gamma'\gamma_{\rm ISR}$ with $\gamma' \to \mu^+\mu^-$, $\gamma' \to e^+e^-$
- lacktriangle Excluding area around the J/ψ resonance

- Mass range $m_{\gamma'}$ between 1.5 and 3.4 GeV/ c^2
- Below the $\pi^+\pi^-$ state becomes dominant and above the $q\bar{q}$ processes polute the spectrum too much

Phys. Lett. B 774, 252 (2017)





Search for invisible dark photon decays using ISR

- Using 14.9 fb $^{-1}$ of data taken at $\sqrt{s} = 4.13$ to 4.60 GeV
- \blacksquare Search for $e^+e^-\to\gamma_{\rm ISR}\gamma'$ with $\gamma'\to\chi\bar\chi$
- No charged tracks and large uncertainty of the start time, require EMC time [-10,25]×50 ns
- Saturation effect of EMC electronics happens around $E_{\gamma} = 2.0 {\rm GeV}$, require $E_{\gamma} < 1.8 {\rm GeV}$

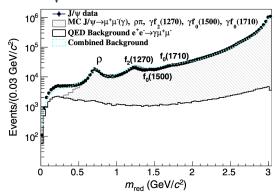
Waiting for spokespersons approval

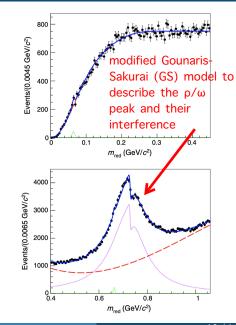
CP-odd light Higgs and ALP searches

CP-odd light Higgs and axion-like particles

CP-odd light Higgs

- Pseudoscalar bosons predicted by NMSSM
- $\blacksquare \frac{\mathcal{B}\left(V \rightarrow \gamma A^{0}\right)}{\mathcal{B}(V \rightarrow l^{+}l^{-})} = \frac{G_{F} m_{q}^{2} g_{q}^{2} C_{\text{QCD}}}{\sqrt{2}\pi\alpha} \left(1 \frac{m_{A^{0}}^{2}}{m_{V}^{2}}\right)$
- $g_c = \cos \theta_A / \tan \beta$ for the c-quark and $g_b = \cos \theta_A \tan \beta$ for the b-quark
- $\tan \beta$ is the ratio of up- and down-type Higgs doublets and $\cos \theta_A$ is the fraction of the nonsinglet component of the A^0

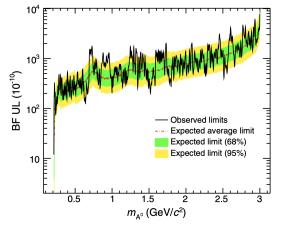

Axion-like particles (ALPs)

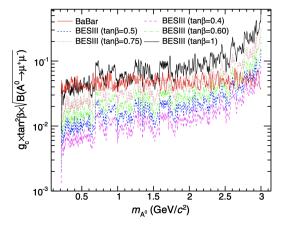

- Pseudo-Goldstone bosons arising from some spontaneously broken global symmetry, addressing the strong CP or hierarchy problems
- Predominantly couples to photons with a coupling strength $g_{a\gamma\gamma}$
- ALP masses and couplings are independent

Search for di-muon decays of CP-odd light Higgs

- Using 9 billion J/ψ events collected in 2009, 2018, and 2019
- Search for $J/\psi \to \gamma A^0$, $A^0 \to \mu^+ \mu^-$

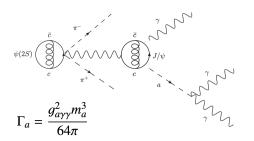
$$lacksquare m_{
m red} = \sqrt{m_{\mu^+\mu^-}^2 - 4m_{\mu}^2}$$

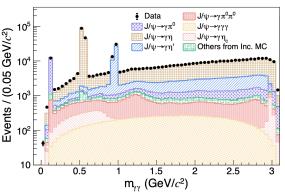




Search for di-muon decays of CP-odd light Higgs

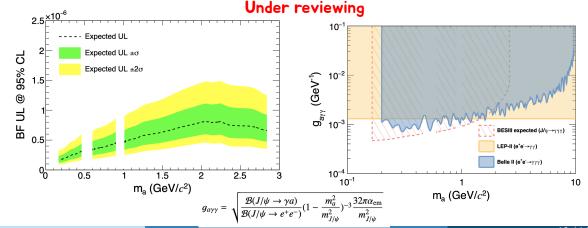
UL of $\mathcal{B}(J/\psi \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$ in range of $(1.2 - 778.0) \times 10^{-9}$ @90% CL for $0.212 \le m_{A^0} \le 3.0 \text{GeV}/c^2$ Better than the BABAR measurement in the low-mass region for $\tan\beta=1.0$


Phys. Rev. D 105, 012008 (2022)



Search for axion-like particles via $J/\psi \to \gamma a$

- Using 2.7 billion $\psi(3686)$ events with $\psi(3686) \rightarrow \pi^+\pi^-J/\psi$ decays
- Search for $J/\psi \rightarrow \gamma a$, $a \rightarrow \gamma \gamma$
- Preclude the polution from non-resonant ALP production $e^+e^- \rightarrow \gamma a$


- Three ALP candidates per event
- Dominant backgrounds from $J/\psi \rightarrow \gamma \pi^0, \gamma \eta$ and $\gamma \pi^0$
- Excluding mass intervals around π^0 , η , η' peaks

Search for axion-like particles via $J/\psi \to \gamma a$

Expected UL of $\mathcal{B}(J/\psi \to \gamma a)$ in range of $(1.7-8.1)\times 10^{-7}$ @95% CL for $0.165 < m_a < 2.84 {\rm GeV}/c^2$

Expected UL of $g_{a\gamma\gamma}$ is $(4.7 \sim 9.0) \times 10^{-4}$ GeV $^{-3}$ in the mass region below 1 GeV $/c^2$, better than Belle II's result

Summary

- BESIII plays an important role in BSM particle searches
- Sensitivity is comparable to B-factory for visible and invisible dark photon searches, better for light CP-odd Higgs and ALP searches in low-mass region
- BESIII has enormous potentials with unique datasets and analysis techniques