Introduction to Di-Tau analysis

Focus on C1C1

Jiarong Yuan 2022/7/11

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

Di-Tau: C1C1 via stau

ATLAS Note SUSY-2019-17 6th July 2022

- Search for direct electroweakino and stau production
 in events with at least two hadronic taus with the
 ATLAS detector
- Mohammad Kassem Ayoub^{a,b}, Anna Bertolini^c, Yuchen Cai^a, Mario Grandi^d,
 Stefan Guindon^e, Benjamin Haslum Hodkinson^f, Michael Helmut Holzbock^g,
- Johannes Josef Junggeburth^g, Shan Jin^b, Dominic Jones^f, Daniela Maria Koeck^d,
- ⁸ Clara Leitgeb^c, Yang Liu^{a,b}, Feng Lu^a, Alexander Mann^c, Christina Potter^f,
- ⁹ Fabrizio Salvatore^d, Xin Wang^{a,b}, Da Xu^a, Chenzheng Zhu^a, Xuai Zhang^a

¹¹ ^b Nanjing University, China ¹² ^c Ludwig-Maximilians-Universität München, Germany ¹³ ^d Sussex University, United Kingdon
¹² ^c Ludwig-Maximilians-Universität München, Germany ¹³ ^d Sussex University, United Kingdon
¹³ ^d Sussex University, United Kingdon
¹⁴ ^c CERN
¹⁵ ^f University of Cambridge, United Kingdon
16 ^g Max-Planck-Insitute, München, Germany

- 17 This note contains the supporting material of the search for direct electroweakino and stau
- ¹⁸ production in events with at least two hadronic taus in the final state. The search uses the full
- ¹⁹ Run-2 dataset which includes 139 fb⁻¹ of integrated luminosity of pp collisions at $\sqrt{s} = 13$ ²⁰ TeV collected by the ATLAS detector from 2015 to 2018. Three scenarios are included:
- ²⁰ TeV collected by the ATLAS detector from 2015 to 2018. Three scenarios are included: $\tilde{\chi}^+_1 \tilde{\chi}^-_1$ and $\tilde{\chi}^+_1 \tilde{\chi}^0_2$ production via stau decay, $\tilde{\chi}^+_1 \tilde{\chi}^0_2$ production via wh decay, direct stau
- χ^{2} production with two hadronic taus.

Preselection

Preselection of low $E_{\rm T}^{\rm miss}$ SR	Preselection of high $E_{\rm T}^{\rm miss}$ SR				
>=2 medium taus					
b-jet	t veto				
Z/H-veto ($m(\tau_1, \tau_2) > 120$	GeV) (only for OS channel)				
asymmetric di-tau trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger				
$E_{\rm T}^{\rm miss} < 150 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$				
τ_1 and $\tau_2 p_{\rm T}$ requirements des	cribed in Table 8 in Section 4.3				

Table 20: Preselection before low and high $E_{\rm T}^{\rm miss}$ SR optimization for both C1C1 and C1N2

Preselection

Simplified ABCD method

preCR – A (lowMass)	preSR – lowMass					
≥ 2 veryloose τ s;	≥ 2 Medium >= 1 tight τ s (OS)					
$m_{\rm T2} > 35 { m GeV}$	$m_{\rm T2} > 35 { m GeV}$					
$10 < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{~GeV}$	$10 < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{GeV}$	$(m_{T2 or} m_{T2}^{max})$				Used for nominal ABCD method
preCR – B (lowMass)	preCR – C (lowMass)	[GeV]				Used for validation and systematics
\geq 2 veryloose τ s;	\geq 2 Medium >= 1 tight τ s (OS)			-	•	
$15 < m_{T2} < 35 \text{ GeV}$	$15 < m_{T2} < 35 \text{ GeV}$		Multi-jet CR-A		SR	
$10 < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{~GeV}$	$10 < E_{\rm T}^{\rm miss} < 150 { m ~GeV}$					
			Multi-jet	т	Multi-iet	
The multi-iet are estimated	hy simplified ABCD method		VK-E		VR-F	

PF(purity factor) = #QCD / #data Multi-jet events yields in a region → data * PF TF = #multi-jet in C / #multi-jet in B #multi-jet in SR = #multi-jet in A × TF

very loose τs medium or tight τs orthogonal with SR

Multi-jet

CR-C

Multi-jet

CR-B

$M_{T2} \sim \tau$ quality correlation

Use QCD events in CR-B, C(after remove MT2 < 35 GeV cut).

Kinematic distribution in the preSR-C1C1-lowMass

Cutcount

Cut candidates

variables	cut values of low $E_{\rm T}^{\rm miss}$ SR	cut values of high $E_{\rm T}^{\rm miss}$ SR					
tau quality	>= 2 medium taus, 1 medium 1 tight taus, 2 tight taus						
$E_T^{miss} \ge$	30, 50, 60, 75, 80, 90, 100 GeV	150, 160, 170, 180, 200 GeV					
$m_{T2} \ge$	40, 50, 60, 70, 80, 90, 100 GeV						
$m_{Tsum} \ge$	200, 250, 300, 350, 400, 450, 500,550 GeV						
$\Delta \mathbf{R}(\tau_1, \tau_2) \leq$	2.4, 2.6, 2.8, 3.0, 3.2, 6						
$ \Delta \phi(\tau_1, \tau_2) \ge$	0.4, 0.5, 0.6, 0.8, 1, 1.2, 1.4						
$m(\tau_1, \tau_2) \ge$	120, 130, 140, 150 GeV						
$p_T(\tau_1) \ge$	95, 100, 110, 120, 130, 140, 150 GeV	50, 55, 60, 65, 70, 80, 90, 100, 120 GeV					
$p_T(\tau_2) \ge$	60, 70, 80, 90, 100 GeV	40, 45, 50, 55, 60, 70, 80, 90, 100 GeV					

f(t_μ)

u.obs

p-value

Signal significance
$$Z = \pm \sqrt{2} \times \sqrt{n \ln \frac{n(b+\sigma^2)}{b^2 + n\sigma^2}} - \frac{b^2}{\sigma^2} \ln \frac{b^2 + n\sigma^2}{b(b+\sigma^2)}$$

Assumptions about uncertainty:

30% flat syst uncertainty on the SM background. signal stat uncertainty is assumed to be negligible the dominant bkg multi-boson stat uncertainty < 50% total bkg stat uncertainty < 30%

CutCount result

Zn	Signal	totalBkg	MET	MT2	MTsum	dRtt	dPhitt	Mtt_12	tau1Pt	tau2Pt
3.31346	14.154 +- 1.7525	4.68716 +- 1.18538(200)	70	70	250	3.0	1.8	130	95	60
3.31346	14.154 +- 1.7525	4.68716 +- 1.18538(200)	70	70	0	3.0	1.8	130	95	60
3.31346	14.154 +- 1.7525	4.68716 +- 1.18538(200)	70	70	200	3.0	1.8	130	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	200	3.0	1.8	120	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	200	3.0	1.8	100	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	200	3.0	1.8	50	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	250	3.0	1.8	100	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	0	3.0	1.8	120	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	250	3.0	1.8	50	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	250	3.0	1.8	120	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	0	3.0	1.8	100	95	60
3.31101	14.154 +- 1.7525	4.69915 +- 1.18544(201)	70	70	0	3.0	1.8	50	95	60

Kinematic distributions

Distribution of a variable with some selections.

Signal Region Definition

SR-C1C1-LM
== 2 medium taus (OS)
>= 1 tight tau
b - jet veto
Z/H veto ($m(\tau_1, \tau_2)$ >120 GeV)
$ \Delta \phi(\tau_1, \tau_2) $ >1.6
E_T^{miss} >60 GeV
<i>m</i> _{T2} >80 GeV
asymmetry di-tau Trigger
E_T^{miss} <150 GeV
$ au_1$ and $ au_2$ p_T requirements

Signal Region N-1 plots

Signal Region Yields

SM process	SR-C1C1-LM
Тор	0.95 ± 0.38
W+jets	0.43 ± 0.50
Z+jets	1.42 ± 0.51
Multi-boson	1.65 ± 0.36
Higgs	0.27 ± 0.26
Multi-jet	1.86 ± 0.19
SM total	6.58 ± 0.95
Ref. point (300, 150)	10.41 ± 1.51
Ref. point (750, 450)	2.06 ± 0.17

$$Z = \pm \sqrt{2} \times \sqrt{n \ln \frac{n(b+\sigma^2)}{b^2 + n\sigma^2} - \frac{b^2}{\sigma^2} \ln \frac{b^2 + n\sigma^2}{b(b+\sigma^2)}}$$

30% syst

Significance plot

$$Z = \pm \sqrt{2} \times \sqrt{n \ln \frac{n(b+\sigma^2)}{b^2 + n\sigma^2} - \frac{b^2}{\sigma^2} \ln \frac{b^2 + n\sigma^2}{b(b+\sigma^2)}}$$

30% syst

Multi-jet background estimation: regions definition

$\mathbf{CR} - \mathbf{A}$ (C1C1-LM)	SR – C1C1 – LM
≥ 2 very loose τ s	$== 2$ Medium ≥ 1 tight τ s (OS)
$60 < E_{\rm T}^{\rm miss} < 150 \; GeV$	$60 < E_{\rm T}^{\rm miss} < 150 \; GeV$
$m_{\rm T2} > 80 { m GeV}$	$m_{\rm T2} > 80 { m GeV}$
$\mathbf{VR} - \mathbf{E}$ (C1C1-LM)	$\mathbf{VR} - \mathbf{F}$ (C1C1-LM)
≥ 2 very loose τ s	== 2 Medium \geq 1 tight τ s (OS)
$10 < E_{\rm T}^{\rm miss} < 150 \; GeV$	$10 < E_{\rm T}^{\rm miss} < 150 \; GeV$
$35 < m_{\rm T2} < 80 {\rm GeV}$	$35 < m_{T2} < 80 \text{ GeV}$
$\mathbf{CR} - \mathbf{B}$ (C1C1-LM)	$\mathbf{CR} - \mathbf{C}$ (C1C1-LM)
≥ 2 very loose τ s	$== 2$ Medium ≥ 1 tight τ s (OS)
$10 < E_{\rm T}^{\rm miss} < 150 \; GeV$	$10 < E_{\rm T}^{\rm miss} < 150 \; GeV$
$15 < m_{T2} < 35 \text{ GeV}$	$15 < m_{T2} < 35 \text{ GeV}$

Multi-jet background estimation

SR	Sample	CR-B	CR-C	VR-E	CR-A	T = C/B	Multi-jet	Multi-jet
							in VR-F	in SR-D
	Data	20564	1040	5728	98			
SR-	Z+jets	488.92 ± 67.08	363.04 ± 87.69	64.47 ± 23.53	4.17 ± 1.88	1		
C1C1	W+jets	923.94 ± 66.74	193.16 ± 55.82	406.51 ± 38.23	21.20 ± 5.22	1		
-LM	Multi-boson	29.90 ± 2.00	34.00 ± 2.16	20.18 ± 1.85	1.97 ± 0.33	0.022	92.91	1.50
	Тор	53.21 ± 3.16	36.00 ± 2.47	45.45 ± 2.85	1.36 ± 0.46	± 0.006	± 31.26	± 0.47
	Higgs	1.92 ± 0.83	1.15 ± 0.80	1.07 ± 0.35	0.02 ± 0.01			
	Multi-jet	19066.13 ± 171.85	412.65 ± 108.89	5190.32 ± 88.06	69.25 ± 11.36			
	Ref. point (300, 150)	26.77 ± 2.32	26.94 ± 2.37	36.16 ± 2.71	10.64 ± 1.52			

Multi-jet background estimation: correlation plot

Multi-jet background estimation: kinematic distribution in VR-F

Multi-jet events are transfered from VR-E.

W-jets background estimation

Use W-CR to normalize W+jets, and validate by W-VR

W-CR	W-VR				
pass TrigHLT_mu20_iloose_L1MU15 (2015) and HLT_mu26_ivarmedium (2016-2018)					
== 1 medium tau and 1 isolated muon (OS)					
<i>b</i> -veto					
Top-tagged events veto					
$p_{T\tau} > 50 \text{ GeV}, p_{T\mu} > 40 \text{ GeV}$					
$m_T(\mu) < 140 \text{GeV}$					
$E_T^{miss} > 60 GeV$					
$40 < m_{T2}(\tau, \mu) < 70 \text{GeV}$	$m_{T2}(\tau,\mu) > 70 \text{GeV}$				

Irreducible background estimation

Only validate these bkgs

<i>T o p</i> -VR1	Top-VR2	Z-VR1	Z-VR2	<i>MB</i> -VR1	MB-VR2			
$\tau - \tau$ channel								
	≥ 2 medium taus (OS), ≥ 1 tight tau							
at least one	at least one <i>b</i> -jet <i>b</i> -jet veto							
$m_{T,\tau_1} + m_{T,\tau_2}$	> 150 GeV	-		$m_{T,\tau_1} + m_{T,\tau_2}$	> 180 GeV			
$m(\tau_1, \tau_2)$ >	120 Gev	$m(\tau_1, \tau_2) < 70 \text{ GeV}$	$m(\tau_1, \tau_2) < 60 \text{ GeV}$	$M = m(\tau_1, \tau_2) < 80 \text{ GeV}^{-1} = m(\tau_1, \tau_2) < 90$				
-		$\Delta R(\tau 1, \tau$	(2) < 1	$\Delta R(\tau 1, \tau 2)$	2) < 1.2			
$\Delta \phi(\tau 1, \tau 2)$) > 1.0	_		$\Delta \phi(\tau 1, \tau 2)$	2) < 1.0			
$m_{\rm T2} > 40 { m ~GeV}$	$m_{\rm T2} > 30 {\rm GeV}$	$m_{\mathrm{T2}} < 60 \; \mathrm{GeV}$		$m_{\rm T2} > 60 { m GeV}$				
asymmetric di-tau trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger	asymmetric di-tau trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger	asymmetric di-tau trigger	di-tau+ $E_{\rm T}^{\rm miss}$ trigger			
$20 < E_{\rm T}^{\rm miss} < 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$	$40 < E_{\rm T}^{\rm miss} < 150 { m ~GeV}$	$E_{\rm T}^{\rm miss} > 150 { m GeV}$	$70 < E_{\rm T}^{\rm miss} < 150 { m GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$			
1		lepton $p_{\rm T}$ and $E_{\rm T}^{\rm miss}$ and	re required at plateau	1 1	· •			

How to design

- How to design VR
 - orthogonal,
 - close to signal region,
 - the number of bkg to be validated should be large.
- How to design CR
 - 2 uncorrelated arguments for ABCD method,
 - orthogonal,
 - small signal contamination,
 - large statistics(loose cut),
 - high purity for one type of background.

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

THE END

