

钍基熔盐堆对核数据的需求

蔡翔舟 中国科学院先进核能创新研究院 中国科学院上海应用物理研究所

中国碳排放与能源战略评估

习主席:实现2030年前碳排放达峰及2060年碳中和目标

🛄 2030年总碳排放相对2020年只能略有增加

- 🛄 2030年核电装机容量~200 GWe,核电占比~8.86%
- 🛄 2060年核电装机容量600~900 GWe,核电占比 27%-48%

🛄 核燃料供应安全与高放乏燃料堆积成为我国核能大力发展的挑战

产生10公斤钚

钍基熔盐堆

产生30克钚

每吨乏燃料

钍基核能(Th)

钍是性能优越的潜在核燃料,可以为能源战略安全提供一个有效途径

"中国钍的丰富储量可满足国内2万年的能源需求" ——1984年诺贝尔物理学奖获得者 Carlo Rubbia 教授

中国钍资源储量

■ 官方钍储量:284000吨

- □ 其中包头白云鄂博占221412吨[1];
- US Geological Survey:达百万~千万吨
 - □ US Geological Survey预估中国稀土矿为8900万吨, 钍占稀土 矿的2~22%;

■ 煤碳中钍储量:6200 **万吨**

- 煤炭资源勘查统计我国煤炭总储量5.9万亿吨^[2],估计煤中钍储量可达6200万吨;
- 煤渣中钍储量:每年~6500吨

□ 2020年中国煤电发电量5.3万亿千瓦时^[3],所产生煤渣社含量可达约~6500吨。

印度、巴西、澳大利亚、美国、土耳其、委内瑞拉、埃 及等国钍资源约占世界探明钍资源总量的70%。

中国钍资源占世界总量4.5%,其中包头白云鄂博稀土矿 已开采的1.5亿吨尾矿中就包括7万吨的钍。

1. 徐光宪. 白云鄂博矿钍资源开发利用迫在眉睫[J]. 稀土信息, 2005(5):4-5; 2. 中国地质调查百项成果, 2016. 004 中国煤炭资源调查报告. 3. 中国煤炭资源网. http://www.sxcoal.com/news/4586120/info00

熔盐堆(MSR)

熔盐堆是四代堆六个候选堆之一,采用液态燃料,是国际公 认适合钍资源高效利用的理想堆型

- ◆ **钍的利用:**可在线处理和添加核燃料,堆内即可 实现闭循环,物理特性适用于钍基燃料
- ◆ **固有安全**:具有本征安全性、高熔点燃料盐,适 于建地下
- ◆ **无水冷却**:适应内陆缺水干旱地区(一带一路)
- ▶ **高温输出:**堆芯输出温度比现有水堆高一倍,除

了高效发电,可以应用于高温制氢及其它热过程

Inherent Safety:具有无需外加干预的固有安全机制

固有安全性

- > 大的负温度反应性系数:能自动快速停堆
- 负空泡系数:燃料盐沸腾时溢出堆外,可快速停堆
- > 剩余反应性低:得益于在线添料机制
- > 停堆简单: 熔盐可通过重力直接排入排空罐

熔盐堆可成功解决钍利用难题(TMSR)

"烧" 钍是历史遗留的技术难题

对堆型要求高:要求钍燃料服役时间 足够长,在不后处理的情况下达到高 的钍利用率。对于现有堆型,难!

后处理难:与商业化PUREX流程同源的THOREX流程过于复杂,无法处理高燃耗、高放射性乏燃料,实际应用不容乐观

燃料循环 **深燃耗:液态燃料**形式 可不停堆在线对燃料组分 进行调整或干预。 热交关器 **干法后处理技术**:第四代 化学处理工厂 后处理技术,是熔盐堆高 效"烧"钍的最佳搭档

熔盐堆解决"烧"钍难题方案:TMSR+在线除气+干法后处理+回堆再利用

熔盐堆是解决"烧"钍难的利剑

核数据是核能开发、核技术应用以及核基础研究相关的**重要基础参数**,是

连接核物理基础研究与核工程及核技术应用的重要桥梁。

先进核能研究对核数据的要求

第四代先进核能系统核数据研究目标

第四代核能系统主要堆型核数据不确定度

四代堆核数据目标精度 Uncertainties at 1 o System Development Phase Parameter Performance Viability < 0.3% Multiplication factor, keff BOL < 0.7% Local power density < 5% < 3% Structure Damage <15% < 9% Reactivity Swing (keff EOL) (<1.0%) (< 0.5%)Breeding Gain <+/-0.06 <+/-0.04 Void Reactivity Effect on each component (leakage; non-leak.) < 16% < 10% Doppler Reactivity Effect < 10% < 16% **Delayed Neutron Fraction** <13% <7% Control Rod Worth < 16% < 10% y heating < 16% < 10%

核数据导致反应堆有效增值因子keff的不确定度

TMSR关键核数据

,α

钍铀燃料循环关键核素

■关键核素:

- ▶ 主链: ^{232, 233}Th、²³³Pa、²³³U
- ≻次链: ^{231, 234}Th、^{231,232,234}Pa、^{232,234}U等

裂变产额数据

■ 从整体上来看,裂变产额数据的评价还相当地不充分,有待将来进一步补充。 ■ 重要裂变产物的产额存在较大分歧

裂变核	BROND	CENDL	ENDF/ B	JEFF	JENDL	JENDL	EXFOR
	-2	-2.1	-VII.0	-3.1	-3.3	-4.0	
Th-230			(F,H)			(F,H)	无
Th-231			(T,F,H)			(T,F,H)	无
Th-232		F	F, H	F, H	F, H	F, H	15
Th-233			(T,F,H)			(T,F,H)	无
Th-234			(F,H)			(F,H)	无
Pa-230			(T,F,H)			(T,F,H)	无
Pa-231			F,(H)			F,(H)	3
Pa-232							无
Pa-233							无
Pa-234							无
U-232	\checkmark		T,(F,H)			T,(F,H)	15
U-233	\checkmark	Т	T, F, H	T,F, H	T, F, H	T, F, H	64
U-234			F, H	F	F, H	F, H	2
U-235		T, F, H	T, F, H	T,F, H	T, F, H	T, F, H	

中子诱发²³³U裂变毒物产物核¹³⁵I (¹³⁵Xe)的累计产额差异较大

核结构与衰变数据

- 一些关键的衰变数据有待更新;
- A=231:²³¹Th基态T_{1/2}需更新;
- A=232:²³²U新的能级数据,基态T_{1/2}需更新;
- A=233:²³³Th、²³³Pa基态T_{1/2}需更新;

■ A=234: ^{234, 234m}Pa有新实验数据,需要更新。

数据类型	无实验数据无更新	有实验数据无更新			
主 亦 粉 捉	²³¹ Pa, ²³² Th, ²³² Pa, ²³⁴ Th	²³¹ Th, ²³² U, ²³³ Th, ²³³ Pa, ²³³ U, ²³⁴ ,			
	234U	^{234m} Pa			
	²³² Th, ²³² Pa, ²³³ U, ²³⁴ Th	2^{31} Th, 2^{31} Pa, 2^{32} U, 2^{33} Th, 2^{33} Pa,			
	^{234m} Pa、 ²³⁴ U	²³⁴ Pa			

◆**熔盐的结构信息:**固态晶格结构、液态离子团

- ▶ 高温下密度粘度、扩散系数、声子态密度等结构信息 实验数据缺乏;
- ▶ 基于第一性原理开展理论计算, 计算量大, 效率低;

◆计算模型:

▶ 现有理论近似较多(立方近似、非相干近似), 计算

误差大;

- ➤ 已有理论计算结果之间差异较大;
- ◆热中子散射截面测量:
 - > 国内高温材料热中子散射截面测量系统少;
 - ▶ 熔盐热中子散射实验数据缺少,无法检验计算结果;

TMSR关键核数据

核数据对TMSR的宏观参数影响

建立钍基熔盐堆专用数据库是TMSR研究核心任务之一!

TMSR核数据研究关键科学问题

TMSR核数据研究关键科学问题

- 🛄 实验数据是核数据研究的基础 ;
- 基于核数据改进要求,需研制专用热区和共振区核数据测量系统;
- 🛄 研制白光中子源。

反应截面	能区	评价数据	实验数据
U-233(n,f)	10-200eV		
	500eV以上		与评价数据符合不好
U-233(n,γ)	5-50eV		误差大
	500eV以上		与评价数据符合不好
Th-232(n,γ)	10eV-5KeV		实验数据太少
Th-232(n,f)	60KeV以下	JEFF-3.1没有评价数据	
	1-500KeV		误差较大
F-19 (n,inl)	0.23~2.8MeV	各数据库符合不好	1家,实验数据缺乏
Li-6 (n,T)	0.1~10MeV	各数据库符合不好	误差较大
Be-9(n, γ)	100eV以上	各数据库不一致	0.0253/35.7keV有

在传统单能中子源的基础上初步建成了大型白光中子源、激光伽马源及大型伽马中子谱仪(氟 化钡探测器阵列、 He-3球等), 拓展了核数据研究领域。

- 反应堆中子源:西安脉冲 堆(热堆)、实验快堆等
 ■ 加速器源
 - □ 单能中子源:高压倍
 加器中子源、HI-13串
 列加速器源等
 - □ 白光中子源: CSNS反 角白光中子源、
 TMSR-PNS、ADS实验 终端等
 - □ 伽马源:激光伽玛源 光束线(SLEGS)

	FZD	FZD	IRMM	PAL	SINAP
	ELBE	ELBE (SRF)	GELINA	PNF	•
类型/国别	大型领/ 徳国	大型源/ 徳国	大型源/ 欧盟	紧凑型/	紧凑型/ 中国
电子能量/MeV	-10	-10	100	70	15
电子平均流强/mA	0.125	1.000	0.096	0.004	0.100
功率/kW	5.00	40.00	9.60	0.26	1.50
脉冲频率/Hz	1.6E±06	5.0E±05	800	15	266
中子脉冲宽度/as	0.4	0.4	0.67-11	1000	3-3000
乾	Liquid Pb	Liquid Pb	U-Mo	Та	w
中子产额*10 ¹³ /s	0.54	2.70	3.20	0.05	0.07
飞行距离/m	4	4	8-400	12	6
中子能量范围	50KeV -10 MeV	50KeV -10 MeV	0.01 ev -10 MeV	0.1 ev -200 ev	0.01 eV -100 keV

◆关键核数据测量

宽能谱

TMSR-PNS中子源

脉冲型高功率电子加速器(峰值功率 10 MW)

多脉冲宽度工作模式 (热、超热、共振区中子测量)

高剂量率复合屏蔽体设计

水冷铜-钨金属复合 γ —中子转换靶

◆主要系统:

- ▶ 15 MeV脉冲型高功率电子直线加速器及辅助系统
- γ-中子转换靶系统
- 自动换样系统
- ▶ 探测系统

◆ 解决的关键问题

◆实验大厅的复合屏蔽设计

- 由于加速器、中子产生靶和探测系统在一个 大厅内,导致本底偏高;
- ▶ 设计了复合屏蔽系统: S1/S2/S3;
- ➤ 在运行功率1000W下,在能量 0.005~1eV 之间,信噪比从1.5变成100,满足实验要求。

◆ 解决的关键问题 ◆复杂辐射场n/γ分辨 > 自主开发数字化波形采集系 统, 消除系统的死时间; ▶针对中子/γ输出的脉冲信号 不同,基于开发的处理程序, 利用脉冲信号甄别法(Pulse Shape Discrimination, PSD)去除γ信号的干扰; >热区测量误差小于4%,达到 国际同类装置水平。

测量类型	探测器系统	状态
总截面	● ⁶ LiF、 ⁶ Lil、 ⁶ Li玻璃、液烁等。	
微分截面	基于透射法测量反应总截面。	已使用
	●多单元中子阵列(锂玻璃+塑料闪烁体)。	
裂变截面	●时间投影室(TPC)。	口今氏石曲
	基于出射粒子径迹重建碎片A、Z,测量裂变截面。	山方山方以初一市小
俘获截面	● ~4π Nal Gamma阵列。	已完成研制
	● HPGe高纯锗(活化法)。	已使用
	● 中子伽玛复合测量谱仪。	计划

基于TMSR-PNS开展的工作

◆ 关注Th-U循环和熔盐堆关键核素;期望从总截面测量入手,完成相关核数据的自主测量;
 ◆ 特点: 紧凑灵活、能区互补(与n-back)、高温空白;

1-1、热区关键核素全截面测量

- ◆ 已测量的关键核素:²³²Th、石墨、⁷Li、
 Be、Fe;
- ◆ 热区测量精度明显提高:以²³²Th为例;

基于TMSR-PNS开展的工作

1-2、热中子散射截面测量

- ◆ 石墨、合金等材料热中子散射数据(TSL)对反应堆影响较大(约 2000pcm),可能会导致反应堆不临界;
- ◆ 已完成石墨、金属Be、Fe、Ni和GH3535、固态熔盐的TSL测量;
 - □ <mark>首次</mark>测量了高温GH3535合金TSL截面(最高温度850℃);
 - 📖 测量结果得到的TSL布拉格峰边界<mark>与理论值一致</mark>。

1-3. 基于TMSR-PNS的屏蔽性能测试

■ 测量特点:

- □ 宽能谱, 多样品一次测量
- 中子/γ辐射场复合测量
- 铝基碳化硼复合材料的屏蔽性能测:
 - □ 1.5mm厚, B₄C含量31%(质量百分比)的 复合材料可屏蔽90%的热中子。

- Mg-Gd合金屏蔽性能测试:
 - □ 2.5/7.5 mm厚度, Gd含量9%
 - □ 中子能量小于0.1 eV,透射率小于1%,99%中子被吸收;
 - □ 对于能量较高的中子(大于0.02eV),样品越厚, 泄露率约小,屏蔽性能越好.

1-4. 样品辐照及探测器性能测试

目标:基于TMSR-PNS,研制一套宽能谱、多用途、可拆卸的中子辐照通道, 开展材料辐照损伤研究及探测器的性能测试。

基于CSNS的Back-n的核数据测量

2-1、基于CSNS的Back-n中子源开展232Th俘获截面测量

- ²³²Th是钍铀循环起始核素, 俘获截面的精度直接关系 到钍铀转换和熔盐堆的运行安全;
- 通过对熔盐堆核数据不确定度分析显示,²³²Th俘获截 面导致的反应堆keff不确定度较大;
- □ 现有时间数据误差最大为20%;
- □ CSNS的Back-n中子源具有较好的能量分辨和束流强度

可开展俘获截面的测量。

基于CSNS的Back-n的核数据测量

²³²Th俘获截面测量

测量结果

- 得到²³²Th /¹⁹⁷Au(n, γ) 俘获截面,并与ENDF/B-VIII.0 \triangleright 进行了对比;
- SAMMY程序对共振能区实验数据进行了处理,初步拟 \geq 合得到了共振参数;
- 利用TALYS计算了不可分辨共振区的 ²³²Th(n,γ) 俘获 \succ 截面数据。 Cross Section(barn)

10⁴

10⁻¹

2-2、^{nat}Li 全截面测量

- Li是熔盐堆中重要元素,其核数据的全截面实验数据关系到全套中子核数据评价的质量
- 基于TMSR-PNS & Back-n实验装置实现了从
 0.001eV~20MeV能区全覆盖
- □ 实验布置:
 - 🖌 能谱: ToF
 - ✓ 方法:透射法(相对测量,精度高)
 - ✓ 探测器: ⁶LiF at TMSR-PNS , Multilayer fast ionization chamber (FIC) at Back-n
 - 样品: ^{nat}Li(92.5% ⁷Li, 7.5% ⁶Li, Φ=50 mm , h=15 mm & 8 mm), 铝膜密封

基于TMSR-PNS & Back-n的核数据测量

natLi 全截面测量

口数据分析

Back-n

- ➤ 中子信号筛选: 信号幅度
- ▶ 能量刻度: 235U的 8.77 eV 吸收峰
- > 双速团解谱:双速团间隔410ns
- > **中子通量归一:**质子束流

TMSR-PNS

▶甄别n/γ:PSD

- ▶ 能量刻度: Co, Ag, In, Cd刻度片
- ▶ 散射本低: PE样品

▶中子通量归一:等时间法

宽能区覆盖(10⁸~20MeV)、能区互补

TMSR关键核数据

 基于上述实验数据和改进数据,于2018年完成 CENLD-TMSR-V1(包含403种核素)建设,作为 CENDL库的工作子库,供国际国内同行检索和检验;
 利用该库开展了核数据适用性,结果显示总体优于 美国ENDF/B-VII.0,已用于TMSR实验堆设计校核 和钍铀循环分析。

问题:不稳定核素²³³Pa核数据测量

- □ **重要意义**: ²³³Pa是Th/U循环的重要中间核素。²³³U主要由²³³Pa衰变而来,其产额受到 ²³³Pa的控制,影响Th/U转换效率。
- □ 影响因素:²³³Pa的俘获截面很大,对²³³U的产额具有重要影响。
- **数据现状**:评价数据,各家数据库之间存在明显差异,尤其是在热区与不可分辨共振区;实验数据: 共8家数据,仅一家在0.1 MeV附近开展测量, 其余七家均仅为一个热能点数据,且各家数据差¹⁰² 异巨大。
- □ **主要困难**:²³³Pa半衰期短;高活度
- 测量方法:替代反应测量、质谱仪

基于上海光源的激光伽马光束线站(SLEGS)开展²³²Th(γ, n)²³¹Th截面测试, 从而研究²³¹Th(n, γ)²³²Th反应截面,拓展中子俘获截面的测量手段。

ロ²³²Th (γ, n) ²³¹Th测量方法

- ◆ 离线活化测量:²³¹Th 特征伽马射线
- ◆ 直接中子法测量:利用³He计数管及慢化体搭建中

子总探测效率恒定探测系统开展多中子测量

采用活化法、质谱等方法,测量辐照后的钍样品及燃料熔盐钍铀关键核素量,研究不 同运行时间及能谱下中子反应截面。

结合熔盐堆特点,实时在线取样,有利于测量半衰期短核素的特征伽马

	²³³ Th	²³³ Pa	²³³ U
衰变/半衰期	β-/22.3m	β-/6.975d	α/159,200y
辐照时间	数百分钟	数百分钟	数百分钟~数天
放射性活度 (Bq)	$1.2 \sim 4.1 * 10^{6}$	2000~ 80000	7.2*10-4~7.2*10-2
	γ: 86.5keV,2.7%		γ: 42keV,0.072%
衰变特征峰	γ: 459keV,1.4%	γ: 311.9keV, 38 5 %	γ: 97keV,0.02%
	β: 260keV~1.2MeV	50.070	α:4.824keV,84.3%
测量系统	高纯锗谱仪 质谱仪 硅探测器	高纯锗谱仪	高纯锗谱仪 质谱仪 硅探测器

TMSR测量参数的扩展

问题:TMSR核数据积分实验研究

钍铀转换效率验证

