Introduction to Heavy Ion Collisions – Experimental Part2 Jet

What is jet?

What is jet quenching?

11/1/22

Jets seen by detectors

Jet finding is easy High pT jets, pp collision

Jets seen by detectors

Jet finding is easy High pT jets, pp collision

...until it is not Low pT jets, heavy-ion collision underlying events

Jets seen by detectors

Need to **define** jet in experiment **and** theory

Jet reconstruction

A jet is what Cacciari, Salam & Soyez say it is!

Anti-k_T:

Sequential clustering of objects in event (calo towers, tracks etc) with a particular distance R Results in cone-shaped, approximately R-sized jets 2008 Fastjet revolution JHEP 0804 (2008) 063 "anti-kT" replaces zoo of prior algorithms:

- Conceptually simple
- Theoretically sound
 - Infrared safe
 - Colinear safe
- Computationally efficient & robust
- Ready-to-use package

Jet reconstruction in heavy-ion collisions

Jets sit on top of large underlying event (UE) Need to decide which particles are part of jet and which belong to UE: **UE subtraction**

Current methods assume UE under jet is same as elsewhere in the event i.e. UE modification due to jets manifest as part of jet

Jet physics without jet

First RHIC Run: Charged Hadron R_{AA}

The start of jet physics in Heavy Ion in 2001

$$R_{AA} = \frac{d^2 N_{AA} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta} \sim \frac{\text{``QCD Medium''}}{\text{``QCD Vacuum''}} - \begin{bmatrix} R_{AA} > 1 \text{ (enhancement)} \\ R_{AA} = 1 \text{ (no medium effect)} \\ R_{AA} < 1 \text{ (suppression)} \end{bmatrix}$$

 $< T_{AA} > = N_{coll} / \sigma_{inel}^{NN}$

 N_{coll} : Number of binary nucleon-nucleon collisions

First RHIC Run: Charged Hadron R_{AA}

The start of jet physics in Heavy Ion in 2001

N_{coll}: Number of binary nucleon-nucleon collisions

 $< T_{AA} > = N_{coll} / \sigma_{inel}^{NN}$

High pT particle as proxy of fragmenting parton

First RHIC Run: Charged Hadron R_{AA}

Verifying N_{coll} scaling

High pT photons, Z and W bosons produced in initial N+N collision Escape QGP without interaction -> $R_{AA} = 1$

Up-to-date R_{AA} measurements

Precise measurement up to very high pT

Up-to-date R_{AA} measurements

Radiative energy loss

Medium effects on jets allow extraction of QGP transport coefficients:

q: radiative energy loss Induced gluon emission in medium

Medium effects on jets allow extraction of QGP transport coefficients:

q: radiative energy loss Induced gluon emission in medium

e: collisional energy loss Collisions with medium partons

Combined RHIC and LHC data provide test for model consistency

Combined RHIC and LHC data provide test for model consistency q determined with about 35% uncertainty (in 2013)

Anisotropic azimuthal distribution of high-p_T particles Path length dependence of energy loss

Higher p_T particles less suppressed -> v_2 approach 0

Sizable v_2 up to 100 GeV Higher p_T particles less suppressed -> v_2 approach 0 Strong correlation between low & high $p_T v_2$ Stringent constraints for energy loss models

Jet physics with jets

Dijet asymmetry

Dijet momentum imbalance

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Dijet asymmetry

Dijet momentum imbalance

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Dijet asymmetry

QGP tomography

From Gunther Roland

Use pT, centrality, path length, collision energy, trigger bias... to isolate different processes in time, coordinate and momentum space

QGP tomography

From Gunther Roland

Trigger with surface bias (e.g. single high p_T hadron)

Use pT, centrality, path length, collision energy, trigger bias... to isolate different processes in time, coordinate and momentum space

QGP tomography

Use pT, centrality, path length, collision energy, trigger bias... to isolate different processes in time, coordinate and momentum space

Shift of final state jet momentum relative to initial parton momentum without geometry bias

Jet inner workings

Jet longitudinal structure

PRC 98 (2018) 024908

Jet longitudinal structure

PRC 98 (2018) 024908

Little/no medium effects in peripheral events

Jet longitudinal structure

Little/no medium effects in peripheral events Excess of soft fragments Depletion at intermediate momenta

Excess of high pT tracks – gluon/quark jets fraction diff?

Jet shapes

Jets are extended objects with momentum and angular structure

Jet shapes

Enhancement at low pT and large r in central collisions

Jet shapes

Enhancement at low pT and large r in central collisions

Jet substructure

Jet substructure

Grooming: isolate hard structure from soft background Approaches: Filtering, trimming, pruning

• ALICE

- New Inner Tracking system (ITS)
- Muon Forward Tracker (MFT) upgrade
- New Fast Interaction trigger (FIT)
- TPC (readout) upgrade

• ATLAS

- Rebuilding Muon Wheels
- Fast Tracker
- Trigger, DAQ, electronics upgrades

LHCb

- New (faster) vertex positioning detector (VeloPix)
- RHIC detectors upgrade
- New Tracker (silicon-microstrip and scintillating fibers (SciFi))
- Read-out upgrade with fully software based trigger

CMS

- Pixel Detector improvements
- Hadronic and EM Calorimeters upgrades
- Muon System upgrade
- New beam pipe

As we speak, a new "state-of-the-art jet detector at RHIC" is under construction at BNL

• sPHENIX:

- 1.4T Magnetic Field
- Large acceptance
- Precision tracking
- Hadronic & EM calorimetry

Early studies indicate substantial differences in jet quenching systematics at 200 GeV vs 5 TeV – unique opportunity to test QCD at variable T

