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Heavy flavor transport as probes of QGP
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Lecture III 

heavy quarkonium production in AA collisions

 vacuum properties: spectroscopy, static energy & pNRQCD
 HQ potential vs free energy at finite T
 Equilibrium properties: potential models & T-matrix, reaction rates
 Phenomenology: semi-classical modelling of transport
 Phenomenology: Open quantum system approach



Heavy quarkonium: multi-scale system
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• NRQCD factorization: short-distance part producing 
ccbar in singlet/octet with small relative p;
long-distance part: pointlike ccbar to bind & form chi_c

• pNRQCD: further integrating out the scale mv~1/r
d.o.f. = QQbar singlet & octet 

Braaten et al. hep-ph/9602374
Brambilla, 2204.11295



Non-relativistic potential model
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• Only Y(1S) is
color-Coulomb

• J/ψ & Y(2S)
are bound by
confining force



Charmonium spectroscopy
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Eichten et al., RMP80,1161(2008)

• Schrodinger equation with spin-dependent potential: V(r)=VCornell(r) + VSD(r)
 fine and hyperfine splitting

Eichten & Quigg, PRD49,5845(1995); Soni et al., Eur.Phys. J. C(2018)78:592



Bottomonium spectroscopy
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• n=nr + 1, nr = number of nodes of radial wave functions

• P=(-1)L+1, C=(-1)L+S

Eichten et al., RMP80,1161(2008)



Vacuum static Q-Qbar potential
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• A quark-antiquark color singlet state with gauge link/Wilson line

• Q-Qbar meson correlator

 in large Euclidean time limit
only ground state survives

• ground state energy:

• consider statice Q-Qbar pair (separation r) created at t=0, 
and annihilated at t=T

Wilson loop along a rectangular loop Γ0

 Static Q-Qbar energy/potential:

Brambilla, 2204.11295

lattice Q-Qbar potential

Sumino, 1411.7853

Coulomb + linear



Finite-T Q-Qbar potential (I)
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• The Wilson loop obeys the Schrodinger equation

Q-Qbar potential defined at late times

• Spectral function of real-time vs imaginary time Wilson loop

 Q-Qbar potential

• It is challenging to reconstruct the spectral function from lattice data of Euclidean Wilson loop

If time-independent potential description holds for all times:                      W(t,r)=exp(-iV(r,T)t)  

 Breit-Wigner peak position & width 
associated with ReV & ImV

Burnier & Rothkopf, PRD87,114019(2013)





Finite-T Q-Qbar potential (II)
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• Perturbative evaluation from HTL (static) gluon propagator Laine et al.,JHEP03(2007)054

one-loop self-energy of the space-like gluon exchanged between Q-Qbar
has an imaginary part  cutting it corresponds to Q scattering off medium q/g: Landau damping

• Fourier transform  ReV + ImV

Blazoit et al., NPA806(2008)312-338

• HTL ReV identical to free 
energy (screened Coulomb 
only) at the same order

• ImV 2*ΓQ when r∞



Finite-T Q-Qbar potential (III)
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• ReV & ImV extracted from lattice data of Eucliean Wilson loop Petreczky et al., PRD105, 054513 (2022)

ReV(r,T)

ImV(r,T)

ReV vs F(r,T)

• ReV little screening up to 3-4*Tc; ImV large & increases toward high T

• Q-Qbar potential represent interactions
on time-scale 1/EB or 1/Γdiss ,shorter 
than 1/T insignificant screening

• Q-Qbar free energy F on long time-scale >>1/T
 significant screening
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Finite-T Q-Qbar potential (IV)
• lattice data of bottomonia: 

little mass shift & large width

Petreczky et al., PLB800(2020)135119

• DNN extraction of Q-Qbar potential by 
fitting to lattice data within Schrodinger eq.

ReE ~ ReV, ImE~ Γ ~ ImV:  little mass shift 
ReV little screening; large width  large ImV 

Shi et al., PRD105, 014017 (2022)



Extracting HQ potential from bottomoium RAA
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• extracted potential 
little screening at T<250 MeV

• statistical transport analysis of Υ data 
with trial input potential  Du et al. ’19

• trial screened Cornell potential with 
screening parameters  T-matrix to get
Y(nS) binding energies  quasifree
reaction rates (EB larger interference 
stronger)  rate equation  RAA

• K on single-Q collisional rate ΓQ larger 
 stronger potential  larger EB  stronger
interference to render Γdiss amenable to  RAA

• even at T~ 400 MeV, still
significant residual confining
force 

• consistent with T-matrix
solution of  potential in the 
strongly coupled scenario,
& qualitatively consistent with 
latest lattice results 



Free energy of static Q-Qbar
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Free energy of static Q-Qbar
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 Singlet Q-Qbar free energy ~ correlator 
of two Polyakov loops:

• LO HTL: screened Coulomb only F<0

• Lattice: F>0 for T<2*Tc, remnant of
linear confining term 

• Singe-Q F=deconfinement order parameter
for pure YM without dynamical light quarks 

• At low T, 
P0infinite
energy for a free Q
 confinement

• At high T, 
P increases  finite 
FQ deconfinement



Heavy quarkonium in QGP
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Suppression
/dissociation

Regeneration
/coalescence

How does the suppression of heavy quarkonium in QGP come about?

• static color screening? Classic paradigm, but probably insignificant from 
state-of-the-art lattice studies 

• dynamical inelastic collisional dissociation: inelastic reaction rate  

• regeneration of charmonia from abundant near-thermalized charm & 
anticharm quarks, in particular at the LHC energies



Melting by static screening
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• Karsch-Satz seminar work
vacuum ornell potential  screening of both Coulomb and confining part

Karsch-Satz, Z.Phys.C37,617-622(1988)

 V(r∞,T) = σ/μ(T) = 2*△mQ(T)   &   mQ
eff(T)=mQ

0 + △mQ(T) 

• Schrodinger equation for Q-Qbar with T-dependent potential

• Def: binding energy at screening mass μ(T) ∝ gT

 dissociation point:  

bottomonium EB(T)

bottomonium radius(T)

Tdiss(Y)~2.6Tc



Melting by static screening
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Karsch-Satz, Z.Phys.C37,617-622(1988)

charmonium EB(T)

charmonium radius(T)

• sequential melting of heavy quarkonia in the order of 
vacuum binding energies

• a thermometer to measure QGP temperatures

 But need to go beyond this too simple, purely static, old scenario

Tdiss(J/ψ)~1.7Tc



Dynamical dissociation: LO
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• Peskin’s OPE analysis in vacuum: Coupling of heavy quarkonium to external gluons
is a short-distance process Peskin, Nucl. Phys. B 156, 365 (1979)

color-octet QQbar can only persist over short space-time range

gluon emissions assemble into small  
singlet clusters: OPE local operators

• This leads to gauge-invariant multipole expansion of the external soft gluons
around the small-size Q-Qbar bound state  NR Hamiltonian Yan, PRD22,1652(1980)

with

color-electric dipole 
coupling (E1)

color-magnetic dipole 
coupling (M1)



Deriving the gluo-dissociation cross section: g + ψ  c + cbar

M. He    Heavy flavor probes lecture, Nov.2, 2022 20

 Color E1 transition
--- Weyl gauge

with        

---- Fermi’s golden rule: 1st order perturbation

Coulomb appro.

 Color M1 transition

--- 1st order perturbation

Coulomb appro.

Peskin’Coulomb
reproduced

A novel 
contribution

 Selection rules
--- E1: ΔL = 1, ΔS = 0;   M1: ΔL = 0, ΔS = 1 from singlet to octet transition
--- P-wave states χc & χb also derived



In-medium potential Schrodinger
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 In-medium potential model Satz 88

 Vacuum/in-medium quarkonium wave func., binding εB(T) 
obtained  

--- higher T, stronger screening
--- bound state size grows, binding energy   

decreases
--- Td(J/ψ)~1.7Tc , Td(Y)~2.6Tc

J/ψ

Y



Gluo-diss. g + ψ  c + cbar cross section
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 In-medium cross sections

--- as T increases, dipole size grows E1 increases, M1 most prominent at low T
--- more tightly bound Y(1S) much smaller cross section

--- Coulomb wave func. + full εB differs from the full potential result by ~50% 
--- M1 overtakes E1 at low energies  ΔL= 0 s-wave isotropic scattering dominant

S-wave

P-wave

 Vacuum cross sections 



Gluo-dissociation rates
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 Heavy quarkonium (at rest) gluo-dissociation rate

E1 + M1

--- M1 most prominent for J/ψ at low T, accounting for ~10-25% of the 
total (E1+M1) rate in Tc --1.2Tc  could be significant as system stays long

--- at low T, εB large, tightly bound J/ψ or Y  gluon sees the bound state  
as a whole  LO gluo-dissociation sensible  rate increases with T  

--- at high T, εB decreases, σ [k2*fg(k)] shifts toward lower [higher] energy   
 phase space mismatched  rate drops off fast  calling for NLO 

Chen & MH, PRC96, 034901 (2017)



Dynamical dissociation: NLO
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• LO, i.e. gluo-dissociation  --- the incoming gluon sees the Ψ as a whole, which is 
reasonable for a tightly-bound state (and relatively low-energy, long-wavelength gluon) 
 applicable at low temperatures, efficient when gluon wave-length ~ Ψ size 

• At high temperatures, Ψ binding energy drops off and radius grows, the incoming gluon 
should see individual Q or Qbar in Ψ, opening up new phase space 

LO: g + Ψ c + cbar
NLO: g/q/qbar + Ψ g/q/qbar + c + cbar

• Quasi-free: σ(g+Ψg+c+cbar)=2*σ(g+cg+c), with a spectator cbar: 
off-shellness of Q & Qbar within Ψ & bound state wave function effects are neglected

Rapp et al., 2001 & 2011

Zhao et al., 2010



NLO dissociation: going beyond quasi-free
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 Quasi-free: effects of bound state wave func. completely ignored

 Starting from the QCD Hamiltonian in Weyl gauge  A0a=0

with



Effective Hamiltonian
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 QCD multipole expansion for heavy quarkonium system

for the QQbar system bound by internal gluons
 One is left with 4 interaction vertices at the order of O(gs)

With 

V4g is at the order of O(gs
2) & thus neglected 

Yan 80, Sumino 14
Brambilla 05 pNRQCD



NLO: g + Ψ g + c + cbar diagrams
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 s- & u-channel diagrams formed out of VSO & VOO analogous to Compton
(a) (b)

 t-channel diagrams formed out of VSO & V3g

(c) (d)

looks like quasi-free diagram



NLO: 2nd order QM perturbation
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 Transition amplitude for g + Ψ g + c + cbar

 Intermediate states & amplitudes for diagrams (a) & (b)

initial/final state: 

--- (a)

wave func., ΔL=2, dipole transition twice  

∝ dabc

Chen & MH, PLB786 (2018) 260–267 



NLO: 2nd order QM perturbation (cont.)

M. He    Heavy flavor probes lecture, Nov.2, 2022 29

 Intermediate states & amplitudes for diagrams (c) & (d)
--- (c)

--- (d)

--- (b)

∝ dabc

∝ fabc

∝ fabc

 dabc*fabc=0  => no interference between                    &



NLO cross section: (a) + (b)
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 2nd transition rate

 Cross section= rate/flux, using

where 

--- Infrared divergence from A(p, κ) & B(p, κ) ∝ 1/ κ if gluons are 
massless, to be regularized by finite thermal gluon mass



NLO cross section: (c) + (d)
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 Vacuum cross section: assuming a “constituent” gluon mass mg=600 MeV

---- NLO quickly takes over from LO; no fall-off
--- NLO (a)+(b) increasing with Eg, while (c)+(d) leveling off

J/ψ

 Cross section= rate/flux, using

J/ψ Y(1S)

--- soft-collinear divergence (the square bracket) for massless-k / / κ gluons  



NLO cross section: finite temperature

M. He    Heavy flavor probes lecture, Nov.2, 2022 32

 In-medium cross section
--- divergences regularized by gluons’ thermal mass  

--- NLO quickly takes over from LO; no fall-off
-- NLO (c)+(d): decreasing with T, expanding wave function overcome by decreasing εB
--- NLO (a)+(b): increases fast with T, due to expanding wave function 

& decreasing εB
-- near Td, dipole size blows up > gluon wave-length, dipole transition to be invalidated
 near Td, cross sections may not be quantitatively reliable

J/ψ Y(1S)



NLO dissociation rate
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 Heavy quarkonium (at rest) NLO-dissociation rate

--- The artifact of LO dropping off toward high T: replaced by NLO increase
--- Near Td, Γdiss ~ GeV: very fast break-up, conceptually consistent with static   

dissociation by color screening
--- Quantitatively might be questionable as dipole approximation becomes  

invalidated, but empirically supported/needed by phenomenological      
transport study, e.g. Strickland ’15,  Γdiss > 2 GeV needed for T>=Td

J/ψ Y(1S)

Chen & MH, PLB786 (2018) 260–267 



pNRQCD point of view: Ψ dissociation
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• pNRQCD: d.o.f. = singlet & octet QQbar states + light quarks & gluons

Rapp et al., 2011

• Singlet-to-octet transition  ~ gluo-dissociation, singlet 1-loop selfenergycutting: g+Ψc-cbar octet

• Landau damping (ImV) ~ parton inelastic collisional dissociation ~ quasi-free

interference term 0
when r 0;
 2*ΓQ when r∞Singlet 2-loop 

selfenergycutting: 
g+Ψg+c-cbar octet 

Brambilla et al., 
2008,2011

Brambilla et al., 2013



Dissociation rate from Schrodinger with ImV
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• Solving the eigenstate Schrodinger equation with Q-Qbar complex potential
Strickland et al., PRD97,016017(2018)

complex potential taken from fitting lattice data: Coulomb + string ReV + ImV





Summary of dissociation rates
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• TAMU: quasi-free with T-matrix binding energies; interference effect (1-sin(tr)/tr) 
implemented for Y states 

• Tsinghua: gluo-dissociation with geometric scaling with in-medium radius of bound states 
• .Kent: computed from Schrodinger eigen-energy with ImVQQbar

 Reasonable agreement in values for J/ψ and Y(2S) but differing considerably for Y(1S)  
between different groups (although very different underlying assumptions) 

MH, van Hees, Rapp, arXiv:2204.09299



Semi-classical transport approaches
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• Boltzmann equation for Ψ transport in QGP

• For 2 >2 process: gluo-dissociation      

= Γ(p,T)     dissociation rate

loss term gain term

 regeneration via 
c-cbar recombination



Semi-classical Boltzmann
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• Boltzmann equation for Ψ transport in QGP

• For 2 >3 process: quasi-free/Landau damping dissociation      

= Γ(p,T)     dissociation rate

loss term gain term

 regeneration via 
c-cbar recombination



Semi-classical Boltzmann: formal solution
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• Boltzmann equation for Ψ transport in QGP

loss term gain term

• Formation solution

• 1st term: describing the dissociation/loss of the initially produced heavy quarkonia,
at t0, known as primordial component 

• 2nd term: increasing with time, describing the regeneration process of heavy quarkonia
from recombination of charm and anticharm quarks from t0 to t’, and their subsequent 
dissociation from t’ to t

A.Polleri, arXiv:nucl-th/0303065 (2003); Yan & Zhuang, PRL97, 232301 (2006)



Reduction of Boltzmann to rate equation

M. He    Heavy flavor probes lecture, Nov.2, 2022 40

• When c & cbar (as well as light gluons/quarks) are in full thermal equilibrium,

For 2 >2 process: gluo-dissociation      


For 2 >3 process: quasi-free/Landau damping dissociation      



detailed balance condition at the level of scattering matrix element squared: 

 gain term ：

• This leads to (true even when including charm fugacity)

• Assume a momentum average dissociation rate ΓΨ(T) , and upon integration over x and p,
 kinetic rate equation for the integrated yield

reaction rate Γψ regeneration toward equilibrium



Kinetic rate equation
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• can be decomposed into two equations for primordial and regenerated component

for primordial component:                                         with initial condition: 

for regeneration component:                                                with initial condition:  

• Two transport parameters: reaction rate & equilibrium limit

• Correction to the equilibrium limit, due to off-equilibrium distribution 
of c & cbar quarks with τc

eq =3-5 fm/c:

Wu et al., 2209.13795

T-matrix binding
vs quasifree rate

Du&Rapp, NPA943(2015)147



Equilibrium limit: J/ψ vs ψ(2S)
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• For large-mass particle m>>T: 

• But NΨ<<ND

• The charmonium equilibrium number

where binding energy

Du&Rapp, NPA943(2015)147



Statistical production of charmonia
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• With exact charm conservation, charm balance equation:

• Production yields

• Charm fugacity determined by the input charm cross section (subject to CNM/shadowing):
Nccbar=<TAA>dσccbar/dy



SHM of charmonia
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• Typical charm fugacity at LHC energies

• SHM charmonia: prediction of ψ(2S)/J/ψ~0.05, a factor 3 smaller than pp
integrated RAA sensitive to input charm cross section



Quarkonium excitation function: RAA vs sqrt(s)
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MH, van Hees, Rapp, arXiv:2204.09299

• J/ψ: at SPS, T<=230 MeV (from dilepton data), J/ψ suppression due to hot dissociation 
of excited states (χc & ψ(2S)) + nuclear absorption (CNM) [direct J/ψ not affected] 

• J/ψ: at RHIC & LHC: higher T & hot suppression stronger, but regeneration from abundant 
near-thermalized c-cbar becomes efficient  RAA becomes larger toward LHC energies

• Y(2S) similar vacuum binding energy as J/ψ, but very different RAA , because b-bbar small
number and less thermalization nearly no regeneration  Y(nS) sequential suppression
and stronger suppression toward LHC energies (higher T) 



J/ψ rAA to characterize regeneration
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Zhou & Zhuang, PRC89,054911(2014)

• J/ψ rAA =1.5 (SPS)  1 (RHIC)  0.5 (LHC): transition from primordial production at SPS
to regeneration production from a nearly thermal source at LHC   

• Stronger thermalization (lower mean pT) of c-cbar enhances regeneration of J/ψ



J/ψ: suppression vs regeneration
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• SHMc: hydrodynamic blastwave spectrum + pp corona

X. Bai, NPA1005(2021) ALICE, PLB805(2020)135434 

• semi-classical transport: regeneration component pT-spectrum modeled with
a blast wave  falling off two fast

regeneration
RAA~1

Du et al. ’15, Zhou et al. ’14, Ferreiro et al. ’14

∝ gc
2   dσccbar/dy

Andronic et al. ’19

x3 suppression



J/ψ “v2 puzzle” 
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• regeneration via RRM

ALICE, ’17 ’20

MH, Wu & Rapp, 
PRL128,162301(2022)

Langevin
c-cbar RRM

SMCs

quantitative connections open-
↔ hidden-charm transport  



Latest SQM22: J/ψ vs ψ(2S)
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• Sequential regeneration: Td(J/ψ) > Td(ψ(2S)) 
 regeneration of ψ(2S) is much later (at
T~150-160 MeV)

Du&Rapp, NPA943(2015)147

• RAA(J/ψ) > RAA(ψ(2S)): production of both
of them at low pT are dominated by
regeneration

• ALICE data of ψ(2S)/J/ψ favors transport
calculation; SHM is disfavored 



Open quantum system approach to bottomonia
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• Regeneration of bottomonia is insignificant  more direct window on suppression mechanisms
semi-classical transport: Γ(T) vs EB(T )  a potential much stronger than F is needed

Du,MH&Rapp, PRC96, 054901 (2017)
Strickland et al., PRD 97, 016017 (2018)

• semi-classicsl transport: well-defined eigenstates (bound states) during in-medium evolution
eigenstates being dissociated, but no quantum transition between them

• Evolution of a single b-bbar pair wave-packet:  time-dependent Schrodinger equation 
with complex in-medium Q-Qbar potential 

Purely radial potential  angular momentum is conserved

• Independent time evolution of different l states: 

with initial wave-function

• The total norm of a single b-bbar pair is conserved, but are being redistributed into different 
bound eigenstates and unbound (dissociated) state due to ImV [if there’s only ReV, expansion 
coefficient cn(t)=cn(0)exp(-iEnt), probabilities not changing] 

 finally projecting onto vacuum eigenstates

Strickland et al., JHEP03(2021)235



OQS: reduced density matrix
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• b-bbar as an open quantum system interacting with the medium
described by a reduced density matrix: 

Brambilla et al. 2018, 2019, 2021; Yao 2021; Akamatsu, 2021



OQS: pNRQCD + Lindblad equation
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• Non-relativistic bottomonium + medium scale hierarchy: marginally satisfied only by Coulombic Y(1S) 

environment correlation time       ~1/πT, 

system/bottomonium intrinsic time      ~1/E,

system relaxation time 1/Γ:



Markovian approximation,
Insensitive to prior evolution

bottomonium quantum 
Brownian motion

• Non-relativistic bottomonium: pNRQCD, singlet & octet as d.o.f. + dipole coupling to medium gluons

• Lindblad equation for the reduced density matrix (diagonal in color singlet & octet space)

Brambilla et al. 2017, 2018, 2019, 2021



OQS: pNRQCD + Lindblad equation
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• Lindblad equation for the reduced density matrix (diagonal in color singlet & octet space)

• Transport coefficient: heavy quark mom. diffusion coefficient & quarkonium mass shift  lattice QCD

• Reorganized into

with non-Hermitian effective Hamiltonian with total width Γ~ ImV 
 no mixing between different color & L 

& 6 collapse operators  mixing between different L by 
color-dipole singlet-octet transition



Open quantum system approach to Υ states
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 OQS + pNRQCD  Lindblad equation Brambilla et al. ’17-21, Yao et al., ’21, Blaizot ’18
Akamatsu ’21, Rothkopf ’20, Gossiaux et al. ’21

• quantum transition between different states included, lacking in semi-classical 

• Coulomb potential + transport coefficient κ encoded in Cn

Brambilla et al. ’21

• Υ(1S) in-medium width
ΓΥ(1S)=3a0

2κ~ 50 MeV at 
T~250 MeV

• values & results comparable 
to semi-classical approach
Strickland et al. ’15



Summary & outlook
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 HFs: excellent probes of sQGP structure, transport properties, 
in-medium force & hadronization
• a small open HF diffusion coefficient Ds

• quarkonia melting by large reaction rates 

• recombination/color neutralization important strong V(r,T) 

 connection between open- & hidden-HF, e.g. via J/ψ regeneration 

 HFs: outlook into Run3 & ALICE3 see ALICE Collab.: Letter of intent for ALICE 3



Back-up
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The following are back-up pages



X(3872) production in HIC
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 inner structure: compact tetraquark vs loosely bound molecule

coalescence model

• Nmolecule > Ntetraquark by x10 or 100, yet no 
account of hadron phase reactions πX <-->DD*
to be better constrained

coalescence within     
AMPT zhang et al. ’21Cho et al. ’11

transport model 
Wu et al. ’21

• Ntetraquark > Nmolecule by x2, molecule 
regenerated in late hadronic phase, 
tetraquark chem. freezeout at Tc
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