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Outline

* Theoretical formulation of hydrodynamics, hydro modes.
* Evolution toward hydro in heavy-ion: emergence of attractor

* Hydrodynamic fluctuations



Evolution stages in heavy-ion collisions
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Hydro modeling 1s unreasonably successful

* Hydro successfully characterizes all flow observables in HIC,

flow observables

harmonic order involved

colliding systems

dependence

B f2) h=1.234.586 PbPb, pPb, dAu, He3Au centrality, pp, particle species,
AuAu pseudo-rapidity
vn {4} = 28 PbPb centrality
vn {6} n=2 PbPb centrality
vn {8} n=2 PbPb centrality
Tn n—=2.3 PbPb, pPb centrality,pp,pseudo-rapidity
Event-by-event flow distribution P(vy) n=2,34 PbPb centrality
Event-plane correlation n<6 PbPb, AuAu centrality, pseudo-rapidity
Projection of V,, onto lower haromincs va{¥a}, ve{¥3}, v7{P¥a3} PbPb, AuAu centrality, pp
Nonlinear medium response coefficients n= 4,5,6,7 PbPb centrality
Symmetric cumulants n<H PbPb, pPb centrality

* New flow observable from vy-v, corre

ations, ...



Hydro modeling i1s unreasonably successful

* Long-range correlation 1n small colliding systems,

without long-range correlations with long-range correlation

CMS pp \s =13 TeV, N°""™ ¢ 35 CMS PbPb |s,, = 2.76 TeV, 220 < N2 ¢ 260
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Hydro modeling 1s unreasonably successful

* Multi-particle correlation and collectivite flow 1n small colliding systems,
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Hydro modeling of system evolution

* Initial condition from effective models: IP-Glasma, MC-Glauber, ...

G(T(),fj_,f) ’LLM(T(),ZTZ"J_,&-)

* Assuming onset of hydro at 7o, after which system expansion 1s captured by
hydrodynamics with respect to a proper equation of state,

Hydro EoM (2nd viscous hydro) + Lattice QCD EoS

* Convert to particles after freeze-out, and particle re-scatterings, resonance
decay, etc. (UrQMD)

* One crucial requirement 1s (close to) local equilibrium -- hydro applicability?



Onset of hydro from far-from-equilbrium

* Pre-equilbrium expansion -- simple picture: hydro starts at later times

Y-

ydro
0 "3’0

Gauge fields -

kinetic theory

what happens 1n small systems, where Tiife ~ 70 ?



Non-relativistic hydro

* Conservation of mass: continuity equation

dM  d

— dt/pdV-O%@p%—pV v =20

* Conservation of momentum: Euler equation

dp d . - . L . VP
d_}Z — ﬁfvpvdv = /Sdeersc. — U+ (V- V)U = —7 + VISc.
O; 11"

P

* In particular, Navier-Stokes equation visc. ~ —



Relativistic hydrodynamics

* Conservation of energy-momentum and (charge: baryon, strangeness, etc.)
8NTMV:O /’L7V:0717273

* Constitutive equations: T = euu” + P(u"u” + g"") 4+ 1"

* Hydro fields (variables): energy density, pressure, flow velocity, stress
tensor.

e, P, u'=~(1,v), II*



Relativistic hydrodynamics

 Continuity equation,
0,T" =0 —— De+(e+P)V-u+ Vu " =0
* Euler equation,

0,T" =0 —— Dut(e+ P)+ VHP — AHd, JI* =0

e Note that

D = w9, SR o, vr = Ay, HRE 5



Theoretical formualtion of hydrodynamics

* As an EFT, theory of hydrodynamics emerges w.r.t. the dominance of long

wavelength formulation and small frequency modes -- hydro modes

* In practice, long-wavelength limit allows for gradient expansion:
1" = O(V) + O(V?) + ...

up to O(V"): nth order viscous hydro.



Navier-Stokes hydrodynamics

* Leading order in gradient 1s well understood -- NS hydro

" = =2n(VHu") — CAM" 0 - u = —not” — (A*Y0 - u

1. 1storder transport coefficients appear, shear and bulk viscosities.

2. where ( ) stands for symmetric, traceless and transverse to u*



Entropy production

* Entropy production satisfies,

1 1
O (sut') = —TV(Mu,,)HW =7 [7702 + C6’2] >0

1. Ideal fluid corresponds to equilbrium, entropy conserved.

2. It 1s also possible to 1identify the unkown form of IT#*" from the condition
of the production of entropy. [Landau&Lifshitz “Fluid dynamics”]

3. Positive entropy production applies to generalized hydro formulation with
magnetic fields dof. (magnetohydrodynamics), spin dof. (spin-hydro), etc.



Constraints on shear and bulk viscosities
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Analytical solution to NS hydro: Bjorken flow

[J. Bjorken, PRD27 (1983)140 ]

* 0+1 D Bjorken expansion: Boost invariant symmetry along space-time
rapidity £ and translational invariant symmetry in transverse plane.

* Applies to very early stages of very high energy nuclear collisions
1. dominated by longitudinal expansion.
2. expansion in transverse plane negligible.

3. boost invariance approximated.




Analytical solution to NS hydro: Bjorken flow

* Bjorken symmetry fixes flow velocity: v = (0,0, 2/t)
e In Milne coordinates: 7 =+/t2 — 22 , ¢ =tanh '(2/t)

X,
05

. \yx

\\\ p

o3

At

ut = (1,0)

= (r,2.,6) — {e —=e(1), P = P(7)

&

< * Hydro EoM becomes: (continuity eq.)
e+ P 1 /4
Or = — [ =
z e T T2 (377 i C)

Euler eq. 1s trival.



Analytical solution to NS hydro: Bjorken flow

» Consider conformal fluid: (9P/de) =c2 =1/3 and ¢ =0
* Reparameterize shear viscosity:

o=@ 23"

_
2. Kinetic theory of massless particles: 7/s = T'7r/5 — n = 4etr/15
To \ 4/3 167 1 1
e(1) = e(79) (?0) exp [ H ( = —)]

45 O T

4




Analytical solution to NS hydro: Gubser flow

* 1+1 D Gubser expansion: Boost invariant symmetry along space-time
rapidity & and rotational symmetry in transverse plane.

* Applies to ultra-central high energy nuclear collisions
1. 1sotropic expansion in transverse plane.

2. boost invariance approximated.

[S. Gubser, 1006.0006, S. Gubser
and A. Yoram, 1012.1314 ]




Analytical solution to NS hydro: Gubser flow

« Symmtry is obvious in new coordinates: (p, 0)

1—q2724¢2r2

sinh p = —

_ 2qr
tan 0 = T2 a2

2qT

ds* = —dp2 + d£2 + cosh? p(d92 + sin? Odop) — {

* Flow velocity is fixed by the symmetry, @ = (1,0)
A 4
* NS hydro EoM reduces to 9,é + 2(é + P) tanh p — 3 tanh® p = 0.

* For conformal flow, 7 = H,T?

. P
e'/* = T(p) = (cosh p) ™3 [To + §H0Fd(P)] — e(T,7)



Hydro modes in NS hydro (neglect bulk)

* Consider static fluid with perturbations andV ~ ¢k and D ~ w ,
0T = de 0T = (e + P)u’ 6T = c2ded” + 119

* Sound mode propogation,

2 2 21.2 2 3
- — k“+ cik”™ — = & Sk — +
W (} ( P)w Cs 0y, C [/ ( )k O(k‘ )

* Shear mode propogation, (large k modes are more damped)

> _ 0P
° Qe

sound velocity: c



Causal Israel-Stwart hydrodynamics

[W. Israel, Annl Phys. 100 (1976), W. Israel
and J. Stewart, Annl Phys. 118 (1979)]

* Acausal propogation,

N2 L _ow Mk koo
e+ P 7 0k e+ P

W =1 S|

* UV regulation of acausality,

w =1

N2 o k2 _{k—>oo:vg<1

s 4
e+ P e+ P1+ ok? k—0:w >iej'r7pk:2

e Israed-Stewart hydro: ak? = —7,w

22



IS hydrodynamics

* Stress tensor expands to 2nd order in gradient,

4

" = —not” —mp (DI + —TI*9 - u
0 3
O(V) ~——————
O(V2)

with a new transport coefficient: (shear) relaxation time

* For a N=4 SYM system,
~2—In2
= 2l




Hydro and non-hydro modes in IS hydro

* Sound mode propogation,

4
— mw® — iw? + ankzcg - 3 fp)wkz -+ icgkz =0
&
( — - 2 2 2 9 3
Y i
\ TII

* Hydro modes go to 0 in long wavelength limit



Hydro and non-hydro modes in IS hydro

* Shear mode propogation, hydro pole w

W= i k- \\ Re

e+ P1—mw X
2
_ n_ 1.2 1 4
B |
o= //
* Non-hydro mode evolution: § ~ e t/Tm non-hydro pole

* These pole structure arises also in retarded Green funcion G



Hydro and non-hydro modes 1n other theories

* AdS/CFT: strongly coupled system without quasi-particle excitation

* Kinetic theory: weakly coupled system with quasi-particle excitation

AdS/CFT

D +...

X

I

| e~ H vdrodynamic

pole
A

¥~ Non-hydodynamic

X

poles w ~2aT{1+/- i)n
X

[A. Kurkela et al., EPJC 79, 965(2019),
P. Romatschke, EPJC 76:352 (2016)]

k

Kinetic theory

k

I

pie+... ]

— Hydrodynamic
pole

e

Non-hvdrodynamic cut
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Hydro with more gradient corrections

* BRSSS hydro (2nd order conformal viscous hydro) [Baier et al., JHEP04(2008)100]

[* = —pot

+ nmp [ (Do + 71

+ Aoy oP? 4 Aot QY 1 A QB QYN

J#U(V'ﬂ)} + K [R<“'”> — (d — 2)?L&R“<W>’8uﬁ]

Note the nonlinear couplings of gradients and new transport coefficients.

27



Hydro with more gradient corrections

* Third order hydro [A. Jaiswal, 1305.3480]
THY

10

‘?-'i'{’uy} = - ¥ 26?1'(7'uy + QTT,SI,’MWU}W o 7‘?1‘,2:”(}'“:)’}'
4 25 | 1
— _ﬂ'f-’:yg _|_ ﬂp(#wi"}ﬁfw i ﬂ-“-'ﬂﬂ-y}ﬁ.fg
3 78?‘7 o S/Bﬂ' ¥
38 LV 22 V)Y
~ SaEE TPl g, — i TP {H V) 0, +

* Note the nonlinear couplings of gradients and new transport coefficients.

* Formulation becomes much more complicated: n! growth?

28



Nature of hydro gradient expansion

* (Global) gradient expansion of stress tensor w.r.t. Knudsen number,
1" = O(V) + O(V?) + Z o, Kn™
* Knudsen number 1s a dimensionless parameter,

mean free path
Kn ~ b

, = how far away a system is from equilibrium
system size

* In fluids, there exist also dimensionless Reynolds number Re and Mach
number Ma, satisfying RexKn~Ma. In the rapid expansion of QGP, Ma~1,
which leaves only one parameter necessary for analysis.

* Relevant to the early-time expansion of QGP in heavy-ion collisions.



Nature of hydro gradient expansion

* Kn must be small so that hydro applies, namely, when Kn<<I, system 1s
close to equilibrium, hydro can be truncated

1" = O(V) + O(V?) + Z o, Kn™

* E.g., space shuttle entering atmosphere at 20 km experiences Kn~10-8

* However, 1t 1s known that expansion 1n Kn 1s asymptotic.

[H. Grad, Phys. Fluids 6 (1963) 147, S. Groot and W. Leeuwen and C van Weert, G.
Denicol and J. Noronha, 1608.07869, J. Blaizot and LY, 1703.10694 ]
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Example, solving BRSSS hydro in Bjorken flow

* BRSSS hydro becomes coupled ODE in Milne coordinates, with Kn = 7. /7

4de
0,e=——— — —
3T T
4 4 A
W:__Q_Tﬂ' 87"”""_? _|‘—12
7 3T 2n)?
* To solve the equation, one may reparameterize the transport coefficients
C.C S
n==0Cys Tre = T"? )\1:C>\T
with the dimensionless parameters determined via underlying theory. E.g.,
kinetic theory: (), = % C_=5 Cy = ;OHCT
7



* The coupled ODE can be recast into nonlinear ODE

dg ( g 4\? 3w C) 4\ 16C
— (1 —) - |1+ —== — |- —=1=0 (*)
Yaw " T 1 +(9+3) 3o, T\IT3) T,
where we define
e dine o P, | —1 anisotropic
W)= dlnt € '
—4/3 isotropic/thermalized
and Kn~! = w= —
T

» Note that g(w) = —4/3 <> e(7) ~ 7~ %3 corresponds to ideal fluid.

32



Solution to eq.(*)

 Numerical solution.

* Semi-analytical solution w.r.t. expansion in Kn,

4 16C, 1
hydro _ il
Z f 3 9 C-w

//

ideal hydro Ist order viscous hydro

g(w) =



Solution to eq.(*)

* Hydro gradients summation does not improve solution.

~1.00-
-1.05 -,

*
F ~
b
r = ~
I x \
. | ~ ~
F .~

—~-1.15

=

L o
-
-

O -1.20f .-

_1.25 "
~1.30

138001

p—— Y

0010

1st order

Zn& order

(@ n|

Oth order%

100

* Numerical solution insensitive

to 1nitial condition -- attractor

In the mathematical field of
dynamical systems, an attractor is a
set of numerical values toward which
a system tends to evolve, for a wide
variety of starting conditions of the
system. System values that get close
enough to the attractor values remain
close even if slightly disturbed.

— Wikipedia 34



Attractor from different theories

DNMR attractor
—— NS

MNumerical solution

aHydro attractor

—-—- NS

Mumerical solution

[G. Denicol et al., 1709.06644]
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Attractor from different theories

[G. Denicol et al., 1804.04771]
BT [ e e
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Muller-Israel-Stewart Hydro
[M. Heller and M. Splinski, PRL 115, 072501 (2015)]

attractor in Gubser flow

(attractor in Hubble flow [Z.Du et al. 2104.12534])
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Attractor from different theories

Boltzmann AdS/CFT

o

Otrl order hydro = = .
13 order hydro = = = = numerical
2"% order hydro attractor

N

1

i
[P. Romatschke, 1074.08699 |




Hydro gradient expansion in Kn 1s aymptotic

* One can solve the expansion coefficient order by order, that

140~

£ /19 ~ 871 (n + B) + O(1/n)

['(n+ B)
Sn+p3

120

—t
o

~ n!

— for large n: f,g) ~

oo
. ©

fut O

(o))
O

* S and beta depend on transport coefficients.

N

20

/s * n! leads to zero radius of convergence,
0 50 100 150 200 . . . . .
n similar to perturbative expansion in QFT.
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Borel resum of asymptotic series

For asymptotic series, Borel resummation technique can be applied.

1. Borel transform of the hydro gradient expansion leads to a convergent series,

oo (0)
gvEo(w) =)  fOypm Z e
n=0

2. Borel resum (Laplace transform)

ghvdro () = w/ dze *“Blgl(z) — w/ dze” *“Blgl|(z)
0 C
3. Borel resum effective represents the asymptotic series, if it 1s Borel
summable, i.e., there is no singularity on R* of Blg|(z2)



Hydro gradient 1s not Borel summable

* There exists singularity of the Borel transform of hydro gradient expansion,

| 1 3 1 [Basar and Dunne, PRD92,125011 ]
analytically: Z) ~
ytically 91(2) 527
numerically: (also in practice) using a Padé approximation of B|g|(z)
10 | Pade approximation of B{g|(z)
. / gives a branch cut on the real axis.
E 00 — The leading pole corresponds to S,
0 — i.e., the radis of convergence of Blg|(z)
-1.0,4 & 0 E 6 Standard procedure to determine radius of convergence of a

Re series, €.g., exp. of LQCD w.r.t. ug/T 40



Imaginary ambiguity from Borel resum

PAN 1

* To avoid branch cut in the resum, one needs analytic continuation to
complex plane, with a complex ambiguity arises w.r.t. integration contour,

/ —/ ~ je” PP
Cy .

accordingly, Borel sum leads to §™7""°(w) = Re (g™ (w)) + (o< ie” > w")



Extends to trans-series and resurgence

* Borel resum must give rise to real solution, which implies trans-series solution,
gw) = 3" (ge 5w )™ w) = 37 (ge 5wy 3 fimw
m=0 m=0 n=0
e Each g™ (w) =", _, = s an asymptotic series, to be resummed.
» Especially, ¢ (w) = g™ (w)
* The complex constant 0 is to be fixed via 1.c. and resurgence relations:
e 5wl Im(e ) Re(§ ) + Re(o™)Im(§'™) = 0

very commonly, this has to be done numerically.



Brief summary (1)

* Hydro gradient expansion w.r.t. Kn diverges.
* Borel resum applies to the divergent hydro gradient expansion.

* After resum, hydro series expansion extends to trans-series,
g (w) = Y (oe™ w)m g™ (w)
m=0

* Note that the factor e °“w” emerges naturally along with i.c.: initial

condition dependent evolution decays! -- attractor behavior

.. . [M. Heller and M. Splinski, PRL
* This 1s how attractor emerges mathematically. 115, 072501 (2015), J. Blaizot

and LY, 2006.08815]



Observed attractor [A.Kurkela et. al., PRL124 (102301) ]

* IS hydro
PL
0.4 ¢ Israel-Stewart attractor
I To-dominated
0.2}

* RTA kinetic theory

t— T/TR

L

0.0

- power-law decay

rR—d4minated

Exponential decay

M

100 i
0.1}
[ -------- 0.0}

[ — RTA attractor

To—dominated

|

2
F
a/'.’ :
r 4
r 4
)
g

[

rR—d4minated

/ t=1/15

0.01
power-law decay

‘l 100

Exponential decay
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Attractor and fixed point analysis

0.2

-0.2 -

—

04 -

0.0

hydro fixed point at late times

‘ Israel-Stewart attractor

To—dominated

/ [—

t— T/TR

free streaming fixed point at early times

100

Tr—dominated




Attractor and fixed point analysis

0.4

0.2

0.3}

0.1}

0.0}

hydro fixed point at late times

[— RTA attractor

To—dominated

.
y,
F 4
F 4
F
;

Tr—dominated

y,

t=1/15

/ 0.01

free streaming fixed point at early times

100
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Fixed points in the pre-equilibrium (e.g., IS hdyro)

* EoM of IS hydro w.r.t. Bjorken flow can be written 1n a matrix form,

_ 4
TOre=—ge+m —> 7OV =—HpV —wH,V
| 4 n 4 T / \
7O = 37. \3 T T n free streaming collision
where,
4
= —1 0 0
) mehD mel
7T 9oC, 3
ST . . 4
* In late time limit, EoM reduces to hdyro fixed point solution: 70-e = ——e

3



Fixed points in the pre-equilibrium (e.g., IS hydro)

* At early times, eigenvalues of the free-streaming
streaming fixed points,

Hrpop+ = A+ 0+

matrix detemine free-

Mg = 1.92962, 0.737049

which implies decay of energy density in free streaming,

0.4 -

S P 5~ 0.263

e(r) 6

 +—0.737

[J. Blaizot and LY, 1712.03856]

0.2

Israel-Stewart attractor

/ 1

t— T/TR

To—dominated

0.0

100

Tr—-dominated

0.2 -




Fixed points 1n the pre-equilibrium (e.g., IS hydro)

* Alternatively, one may derive the beta function defined with respect to the
evolution of g(w),

Bw) = duglw) = o) |55~ (5 +9w) (5 +90w) +w)]

[J. Blaizot and LY, 1904.08677]

fixed points can be solved accordingly via

(- 07 - g — —1.92962, —0.737049

: _4
T 00ig = —3

Blw) =0 — 4




Slow mode evolution and attractor (e.g., IS hydro)

70;V = —-H(w)V, with H(w)=Hp + wHy,

* Solving the coupled EoM of IS hydro effectively via the time-dependent
eigenvalue problem of matrix, in analogy to QM,

H(w)¢+ (w) = A (w)d+ (w)

arbitrary evolution should be dominated by the slowest mode,

V(w) ~ ¢_(w) +H#He 2 W (w) if A=A —A_ >0

ttract '
attractor perturbations [J. Brewer et al., 1910.00021]



Slow mode evolution and attractor (e.g., IS hydro)

o - N w S (8)] (@)] ~
I e L o o e e e e e L e e e e e

0.01 0.05 0.10 0.50 1 9 10

« Gap of eigenvalues: AAw) ~ 1.2+ w

0.4

Israel-Stewart attractor

To-dominated

/ 1

t— T/ IR

_ 7_—1.26—’7'/7'7T

100

Tr—-dominated

explains early-time power-law decay and late-time exponential decay.
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Brief summary (2)

* Hydro attractor solution can be as well understood 1n terms of

1.

Fixed point analysis: Free-streaming fixed point corresponds to 1D
expansion. Hydro fixed point corresponds to collisions among
excitations. Therefore, emergence of hydro attractor due to competing
effects of expasion and collision.

Slow mode (adiabatic) evolution: Slow mode dominates system
evolution throughout all stages, if the gap 1s perserved. In particular, the
fast mode plays the role of non-hydro mode, which at late times,
behavior as § ~ e~ /0



Onset of hydro from far-from-equilbrium

* Pre-equilbrium expansion -- attractor picture: hydro starts much earlier




Fluctuating hydrodynamic

* Hydro fluctuation: thermal fluctuation in fluids, universal in nature.
* Classical hydro (w/o fluc.) ==> hydro with thermal fluctuations
o,TH =0 =T =TH 4 6TH + SH
where S*" characterizes random noise, and 07" ~ de, du* are induced thermal

perturbations accordingly.

* Here classical hydro consists of classical hydro fields -- hydro fields without
correction from thermal fluctuations, (what we have discussed so far)

py wo v pv pv
Tcl — EclU Uy + PClAcl + Hcl



Fluctuating hydrodynamic

* Fluctuation-dissipation relation, (define {...} emsemble average)

(9 (21)5° (22)} = 2T(n(AY AT + AFEA) 1 (C = Z) A A5 (y — )

[Landan and Lifshtz, “Fluid dynamics”]

* Stmilarly for charge current: (0 charge conductivity)

Jg — chl + (Sjg + Iy, {I“(:Cl)fy(il’}z)} = 20TA‘“’5(:131 — Zl’}z)

[J. Kapusta, B. Muller and M. Stephanov, PRC85, 054906 ]
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Properties of hydrodynamic fluctuations

* Qualitatively different from quantum fluctuations: initial state fluctuations

¢.g.: event-by-event fluctuations of initial energy density
6e;(To, X 1)

1 T
{de;de;} N, {dede} x 76 ,  {dej0e} =0

* Hydro fluctuations are strong in dissipative and small systems.

* Hydro fluctuations are substantial near critical region.
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Hydrodynamic fluctuations in heavy-ion collisions

57



Hydrodynamic fluctuations in heavy-ion collisions

) . . 0.14 -
e Numerical simulations of Noiseless

012 - 2 i :;': -

fluctuating hydrodynamics.
0.1

* Solving stochastic partial
0.08

differential equations. &
0.06

* Numerical realization of Dirac oo

delta function on grid. o

* Needs average for obserbles. .

0 2 4 6 8 10 12 14 16
T [fm/c]

[B. Schenke et. al., 2005.00621, see also C.
Young, PRC89, 024913, A. Sakai et al.,
2111.08963, A. De et al., 2203.02134]



Evolution of n-point correlation: EFT

* Fluctuating hydro implies deterministic equation for n-point correlations.

* Tree-level: classical hydro EoM

* One-point level: {6} =0

* At two-point level (one-loop): {66} ==> hydro-kinetic equation,
ONa = —aa(k® n(t))(Na—Na) +  Balt, k)N A

~~ N —
relaxation type expansion bkg flow

where Ny ~ {6767} {67 6T}

* N-point cumulants. [X.An et al., 2009.10742]



Renormalization from hydro fluctuations

 Taking into account of hydro fluctuations, averaged emergy-momentum
tensor receives corrections from n-point correlations.

* For the Bjorken flow, for instance, for energy density, one has

0z §0z
rrresy —p 2 0T _én_RJr 22 AT

T e+ b \ \
loop contains to k-integral —Q— BPEkN4 = / k*dk + finite
0




Renormalization from hydro fluctuations

 Renormalized shear ViSCOSity, [P. Kovtun, G. Moore and P. Romatschke, PRD84, 025006(2016)]

17TAT (e + P)
12072n

Nr =1+

* Renormalized pressure, [Y.Aakamatsu et al., 1606.07742]

1 TA®
P — — p— PC —_—
R = 3CR T 62

1

* Long-time tails 72 ATS¢
32

s T2{T} = O(VY) + O(V) + O(V32) + O(V?)

61



Summary

* Hydro emerges as EFT in long wavelength limit: hydro gaped from non-hydro
* Hydro from far-from-equilibrium exhibits attractor behavior

1. Borel resum ==> attractor and non-hydro (decay of perturbations).

2. Fixed point analysis ==> attractor smoothly connects fixed points.

3. Slow mode evolution ==> attractor dominated by slow mode.

* Hydro fluctuations

1. Flutuating hydro can be solved via stochastic ODE.

2. n-point function as EFT



