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Jet quenching



General picture: how to study hot matter with short lifetime
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• Observe (thermal/soft) particles 
emitted from the medium

• Send energetic particles (hard 
probes) through the medium



Hard probes
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Nuclear modification factor
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energy loss shifts 
spectrum to left

medium absorption 
shifts spectrum 
downwards

Mueller et al., Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)



What is jet?

A narrow cone of hadrons and 
other particles produced by 
hadronization and decay of 
quarks and gluons.
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What is jet depends on how you define a jet

Theorist: a single particle (LO) or a single particle + one emission within a cone (NLO)
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(LO) (NLO)

Experimentalists: different jet finding algorithms to construct jets 

Cone algorithms (e.g. IC-PR, iterative cone algorithm with progressive removal) 

1. Highest pT particle: seed axis

2. Circle with radius R, summation over momenta inside gives jet trial axis  

3. If seed axis = jet trial axis, a jet is found, removed from particle list, 
otherwise set current trial as seed and repeat 2 & 3



Jet finding algorithms
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Requirements

Sequential clustering algorithm (e.g. kt algorithm) 

Define distance 

1. Start with i with the highest pT  

2. Calculate , if  is smallest with some j, combine i 
and j into one object and remove them from the particle list; 
repeat this step until  is smallest, then i is the final jet 

3. Repeat from 1 until no particle is left in the list

{dij, diB} dij

diB



Jet finding algorithms
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kt anti-kt Cambridge/Aachen (C/A)

(combine soft first) (combine hard first)

(best for resolving jets) (best for de-clustering, 
studying jet substructure)



Theoretical framework for hadrons/jets in pp collisions
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a

b
j

d

h

p

p
proton

proton

parton

parton

parton 
scattering factorization into perturbative and 

non-perturbative parts 

dσpp→hX = ∑
abjd

∫ dxa ∫ dxb ∫ dzj fa/p(xa, Q2) fb/p(xb, Q2) dσab→jd(Q2) Dh/j(zj, Q2)

dσh = ∑
abjd

fa/p ⊗ fb/p ⊗ dσab→jd ⊗ Dh/j dσjet = ∑
abjd

fa/p ⊗ fb/p ⊗ dσab→jd ⊗ Jj

hadron production jet production 



Hadron spectra in pp collisions
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Within the NLO initial production + fragmentation framework, gluon fragmentation 

• dominates  production up to 50 GeV 
• contributes to over 40% D up to 100 GeV

h±
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Formation of jet from a single parton
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More theoretical studies, e.g. [ Kang, Ringer, Vitev, JHEP 10 (2016) 125 ] 
Here we concentrate on numerical modelings/simulations, e.g. physics in Pythia 

• Start with a highly virtual parton ( ), consider  splitting Q2 = p2 − m2 a → bc

@

@Q2
D(z,Q2) =

↵s

2⇡

1

Q2

Z 1

z

dy

y
P (y)D

✓
z

y
,Q2

◆
DGLAP equation for FF:

Sudakov form factor: Δa(Q2
max, Q2

a) = ∏
i

Δai(Q2
max, Q2

a) = ∏
i

exp −
Q2

max

∫
Q2

a

dQ2

Q2
αs(Q2)

2π

zmax

∫
zmin

dzPai(z, Q2)

Probability of no splitting between  and Qmax Qa
i: splitting channel 
P: splitting function 
z: fractional energy or momentum



Monte Carlo implementation
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• Random number  

• If , particle is stable, no splitting ( : minimum allowed virtuality) 

• Otherwise, splitting happens 

• If , no splitting above , or splitting happens at or below  

• Solve  to obtain , virtuality at which  splits 

•
Determine the splitting channel, use branching ratio from  

• For a given channel, sample z using  

•   and  are new ’s for determining  and  in  splitting

r ∈ (0,1)
r ≤ Δ(Q2

max, Q2
min) Qmin

r ≤ Δ(Q2
max, Q2

a) = Δ(Q2
max, Q2

min)
Δ(Q2a, Q2

min)
Qa Qa

r = Δ(Q2
max, Q2

a) Qa a

BRai(Q2
a) = ∫

zmax

zmin

dzPai(z, Q2
a)

Pai(z, Q2
a)

zQa (1 − z)Qa Qmax Qb Qc a → bc



Kinematics
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•  

• Conservation of the minus-component gives: 

[p+, Q2
a

2p+ ,0] → [zp+, Q2
b + k2

⊥
2zp+ , ⃗k ⊥] + [(1 − z)p+, Q2

c + k2
⊥

2(1 − z)p+ , − ⃗k ⊥]
k2

⊥ = z(1 − z)Q2
a − (1 − z)Q2

b − zQ2
c

Light cone coordinates  from cartesian coordinates:      

,    ,     

,              

On shell condition:  

   convenient for a large  component

(A+, A−, ⃗A ⊥) (A0, A1, A2, A3)
A+ = (A0 + A3)/ 2 A− = (A0 − A3)/ 2 ⃗A ⊥ = (A1, A2)
A ⋅ B = A+B− + A−B+ − ⃗A ⊥ ⋅ ⃗B ⊥ A2 = 2A+A− − A2

⊥

p2 = m2 → p− = m2 + p2
⊥

2p+

p = (p+, m2 + p2
⊥

2p+ , ⃗p ⊥) p+



Light cone coordinates
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We observe the world with light

What is the time on the photo? (  or )t = x0 t = x0 + x3



Parton shower
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• We know how to determine  and  for  

• Starting from a  (e.g. Pythia choice ), generate one splitting 

• Using new  and , generate secondary splittings 

• Iterate until all partons reach  (usually choose 1 GeV in vacuum) 

• Hadronization 

• Use jet finding algorithm to construct jets

Q pμ a → bc

Qmax Q2
max = 4Q2

hard

Qb Qc

Qmin

a
b

c



Theoretical framework for hadrons/jets in AA collisions
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a

b
c

d

h

A

A

j

nucleus

nucleus

parton

parton

parton 

Medium-modified fragmentation function: 
 D̃h/j = ∑

j′ 

Pj→j′ 
⊗ Dh/j′ 

Could be 
perturbative or 
non-perturbative

å ÄÄÄ= ®
abjX

jhjXabBbAah Ddffd ///
~~ ss

Cold nuclear matter effects



Cold nuclear matter effects
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(Taken from Eskola 2009) Initial spectra of c/b quarks

Nuclear shadowing effect 

• nucleon in nucleus is “shadowed” 
by other nucleons at small x 

• Momentum conservation requires 
anti-shadowing at larger x

Cronin effect: momentum broadening of partons before hard 
scatterings  

Constraints from pA or dA collisions Prediction from 
HIJING

RA
i (x) = fi/A(x)/fi/p(x)



Hot nuclear matter (QGP) effects
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Δa(Q2
max, Q2

a) = ∏
i

Δai(Q2
max, Q2

a) = ∏
i

exp −
Q2

max

∫
Q2

a

dQ2

Q2
αs(Q2)

2π

zmax

∫
zmin

dzPai(z, Q2)Recall: Sudakov

Splitting function:

• Medium-modified parton shower at high virtuality

Different theories/models at different virtuality/energy scales

Pai(z, Q2) = Pvac
ai (z) + Pmed

ai (z, Q2) (vacuum part + medium-induced part)

Medium-induced splitting function: 

(e.g. from higher-twist energy loss calculation)

Pmed
ai (z, Q2) = CA

C2(a)
Pvac

ai (z)
z(1 − z)Q2

×
τ+

f

∫
0

dζ+ ̂qa ( ⃗r + ̂n
ζ+

2 ) [2 − 2 cos ( ζ+

τ+
f )]

medium inforation location dependence 

interference effect

* needs hydrodynamic input



Medium-induced splitting function
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jet parton

emitted gluon 

nuclear medium 

scattering

❖ GW: ignore phase factors in collinear expansion 
❖ AZZ: consider phase factors, but calculate only one diagram 
❖ SCM: calculate all diagrams with phase factors 
❖ More and more precise description of the length dependence of jet energy loss 
❖ Monte Carlo implementation — MATTER [ Phys. Rev. C 101 (2020) 2, 024903 ]

+ 18 other diagrams

[ Phys. Rev. C 105 (2022) 2, 024908 ]



Other challenges
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Multiple scatterings 

e.g. AMY energy loss formalism 
[ JHEP 06 (2002) 030 ]

Multiple emissions



Space-time structure of parton shower
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Pmed
ai (z, Q2) = CA

C2(a)
Pvac

ai (z)
z(1 − z)Q2 ×

τ+
f

∫
0

dζ+ ̂qa ( ⃗r + ̂n
ζ+

2 ) [2 − 2 cos ( ζ+

τ+
f )]

Space-time structure is usually ignored for vacuum shower, but important for its medium modification

Determined by the initial location, direction of propagation and time of propagation 

: formation time (time of propagation before splitting) 

            

τ+
f

τ+
f = 2p+

Q2 = 2p+z(1 − z)
k2⊥

p+, Q2
zp+

(1 − z)p+

k⊥

k⊥



Formation time
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•  

• Needs virtuality for  conservation,  

• Off-shellness is unstable,      (assume 0 rest mass) 

• Cartesian coordinate:  

• Additional correction is needed for massive particles: ,  if 

[p+, Q2
a

2p+ ,0] → [zp+, k2
⊥

2zp+ , ⃗k ⊥] + [(1 − z)p+, k2
⊥

2(1 − z)p+ , − ⃗k ⊥], (Qb, Qc ≪ Qa)

p− Q2
a = k2

⊥
z(1 − z)

τ+
f ∼ 1

Δp− = 2p+

Q2a
= 2z(1 − z)p+

k2⊥

τf = 2E
Q2a

= 2z(1 − z)E
k2⊥

τf = 2E
Q2a

= 2z(1 − z)E
k2⊥ + z2M2 Ma = Mc = M



Initial condition

❖ Glauber model assumption: nucleus-nucleus collision is viewed a superposition of 
independent interaction of nucleon pairs. 

❖ At high energy, each nucleon moves in a straight line 

❖
Distribution of nucleons inside a nucleus — Woods-Saxon: ρ(r) = ρ0

1 + w(r/R)2

1 + exp[(r − R)/a]
22

Thickness function: 

TA( ⃗r) = ρ( ⃗r, zA)dzA

normalized to 1 



Glauber model

❖ Superposition of nucleon-nucleon (p-p) collision with given  

❖ The cross section of A-B collision is then 

σNN
inel(s)

23

Overlap:



Participant number and binary collision number

❖ Participant and binary collision:
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participant number 

2 

3 

5

binary collision number  

1 

2 

6

proportional to soft matter density 
proportional to hard 

probe production



Semi-classical determination of collision locations

❖ If , collision happens between this pair 

❖ Each nucleon contributes to location of participants  initial energy density of QGP 

❖ The middle point of the pair contributes to local of binary collisions  jet production points

d < σ/π

→
→

25

dX



Simplified models of medium modification
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Modify splitting functions in Pythia 

• e.g.      

•  

• Implementation YAJEM-FMED, Q-Pythia

Pq→qg(z) = CF
1 + z2

1 − z
⇒ CF [ 2(1 + fmed)

1 − z
− (1 + z)]

fmed = Kf ∫ dζ [ϵ(ζ)]3/4 × [cosh ρ(ζ) − sinh ρ(ζ)cos ψ]
model parameter energy density flow effect: ̂qa = ̂qa,local ⋅ pμuμ/p0

: flow rapidityρ

particle momentum

 : angleψ



Simplified models
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Keep vacuum splitting function, modify parton kinematics from Pythia 

Example 1: Hybrid model [ JHEP 07 (2011) 118, JHEP 03 (2013) 080 ] 

 

• Apply strongly coupled drag on partons 

•
 ,    stopping distance:   

Example 2: YAJEM [ Phys. Rev. C C79 (2009) 054906 ] 

   (YAJEM-RAD)              (YAJEM-DRAG)

1
Ein

dE
dx

= − 4
π

x2

x2stop

1
x2stop − x2

xstop = 1
2κsc

E1/3
in

T4/3

ΔQ2
a = ∫

τ0
a+τ f

a

τ0a

dζ ̂qa(ζ) ΔEa = ∫
τ0

a+τ f
a

τ0a

dζDa(ζ)

Transport/drag coefficient ∼ T3 and pμuμ/p0

strong coupling parameter



Simplified models
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Example 3: JEWEL [ JHEP 03 (2016) 053, JHEP 10 (2014) 019 ] 

• A radiated gluon can scatter with the medium during  

• Scattering increases , therefore also updates  (becomes shorter) 

• If scattering (mean free path) is before the new , keep this medium modification, otherwise 

reject 
• If there are multiple scatterings, the medium-induced gluon is accepted with probability 

, modeling “totally coherent limit” 

• Scatterings can raise  and excite additional splittings

τf ∼ 2E/k2
⊥

k2
⊥ τf

τf

1/Nscat

Q2



Medium modification at low virtuality: transport theory
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• Parton shower picture fails when virtuality no longer keeps dropping ( ) 

• Microscopic transport model: time-evolution of particle systems by solving transport equations

Q2 ∼ ̂qτf

Boltzmann equation applies when   

• Dilute quasi-particle system 
• Weak interaction 

Running coupling of QCD: 
Boltzmann Transport is more valid for particles with larger 
energy scale

lmfp ∼ 1
ρσ

≫ σ

2004, Gross, Politzer, Wilczek

e.g. Boltzmann equation
d
dt

fa(t, ⃗x , ⃗p ) = [ ∂
∂t

+ pi

E ⃗p

∂
∂xi

+ Fi
∂

∂pi ] fa(t, ⃗x , ⃗p ) = 2[ fa]



Transport theory in heavy-ion collisions
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Applicable to jet-medium interaction: 
quarks and gluons (partons) at large energy scale are 
quasi-particles

initial state

pre-equilibrium

QGP and
hydrodynamic expansion

hadronization

hadronic phase
and freeze-out

✔ 
energetic 
particles

? 
strongly 
coupled 
system

✖  
non-

perturbative

✔ 
dilute 

system 

Transport?

✔



d
dt

fa(t, ⃗x , ⃗p ) = [ ∂
∂t

+ pi

E ⃗p

∂
∂xi

+ Fi
∂

∂pi ] fa(t, ⃗x , ⃗p ) = 2[ fa]

Jet parton interactions with the QGP
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Pj
Pj’ Ph

Elastic and inelastic processes: 

Hard parton

Elastic (collisional) Inelastic (radiative)

Hard parton

dΓcoll
dωdk2⊥

(T, E, …) = ?

(ω, k⊥)
(ω, l⊥)

dΓcoll
dωdl2⊥

(T, E, …) = ?

pa ⋅ ∂fa(xa, pa) = Ea(2el
a + 2inel

a )



Elastic process
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Boltzmann equation:

Collision integral:

Loss term: 

Scattering rate:

Relating transition 
rate to cross section:

gain - loss 

d
dt

fa = − ∫ d3k w( ⃗p , ⃗k ) fa = − Γ fa

d
dt

fa(t, ⃗x , ⃗p ) = 2[ fa]

2[ fa] ≡ ∫ d3k [w( ⃗p + ⃗k , ⃗k ) fa( ⃗p + ⃗k ) − w( ⃗p , ⃗k ) fa( ⃗p )]

Γ = ∫ d3k w( ⃗p , ⃗k ) number of scattering per unit time

transition rate

w( ⃗p , ⃗k ) = γb ∫ d3q
2π3 fb( ⃗q ) vrel dσ( ⃗p , ⃗q → ⃗p − ⃗k , ⃗q + ⃗k )

if  is not affected by , linear equation with respect to  fb fa fa



Elastic process
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Relative velocity:

Cross section:

vrel = ⃗p
E ⃗p

− ⃗q
E ⃗q

=
(p ⋅ q)2 − (mamb)2

E ⃗p E ⃗q

Full expression for elastic scattering rate:

Γel
a ( ⃗p a, T) = ∑

b,(cd)

γb

2Ea ∫ ∏
i=b,c,d

d[pi] fb × (2π)4δ(4)(pa + pb − pc − pd) |ℳab→cd |2

d[pi] ≡ d3pi

2Ei(2π)3sum over all possible scattering channels 



Elastic process
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Light flavor (massless): Heavy flavor:



Calculation of the scattering rate
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Γel
a ( ⃗p a, T) = ∑

b,(cd)

γb

2Ea ∫ ∏
i=b,c,d

d[pi] fb S2( ̂s, ̂t, ̂u) × (2π)4δ(4)(pa + pb − pc − pd) |ℳab→cd |2

Avoid collinear divergence:  

Debye screening mass: 

S2( ̂s, ̂t, ̂u) = θ( ̂s ≥ 2μ2
D)θ(− ̂s + μ2

D ≤ ̂t ≤ − μ2
D)

μ2
D = g2T2(Nc + Nf /2)/3

Γel
a ( ⃗p a, T) = ∑

b,(cd)

γb

16Ea(2π)4 ∫ dEbdθbdθddϕd

× fb(Eb, T)S2( ̂s, ̂t, ̂u) |ℳab→cd |2 EbEd sin θb sin θd

Ea − | ⃗p a |cos θd + Eb − Eb cos θbd

cos θbd = sin θb sin θd cos ϕd + cos θb cos θd

Ed = EaEb − paEb cos θb

Ea − pa cos θd + Eb − Eb cos θbd

Assume b massless here  

Massive case [ Eur. Phys. J. C 82 (2022) 4, 350 ]

x

y

⃗p az

⃗p b
⃗p dθb θd

(Eb)

ϕd



Scattering / momentum broadening / energy loss rate 
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General form:

⟨⟨X( ⃗p a, T)⟩⟩ = ∑
b,(cd)

γb

16Ea(2π)4 ∫ dEbdθbdθddϕd

× X( ⃗p a, T)fb(Eb, T)S2( ̂s, ̂t, ̂u) |ℳab→cd |2 EbEd sin θb sin θd

Ea − | ⃗p a |cos θd + Eb − Eb cos θbd

Γel
a = ⟨⟨1⟩⟩ ̂qa = ⟨⟨[ ⃗p c − ( ⃗p c ⋅ ̂pa) ̂pa]2⟩⟩ ̂ea = ⟨⟨Ea − Ec⟩⟩

Small angle approximation:

Γel
a = C2(a) 42ζ(3)

π
α2

s T3

μ2D
̂qa = C2(a) 42ζ(3)

π
α2

s T3 ln (
C ̂qEaT

4μ2D ) ̂ea = C2(a) 3π
2 α2

s T2 ln ( C ̂eEaT
4μ2D )

⃗p a

⃗p c ⃗p ⊥



ΔEcol. from our MC simulation agrees with the semi-analytical result. 

Monte Carlo simula?on
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1. Use total rate                       to determine 

the probability of elastic scattering  

2. Use branching ratios            to determine 

the scattering channel 

3. Use the differential rate to sample the p 

space of the two outgoing partons 

Γel
a ( ⃗p a, T) = ∑

b,(cd)

γb

16Ea(2π)4 ∫ dEbdθbdθddϕd

× fb(Eb, T)S2( ̂s, ̂t, ̂u) |ℳab→cd |2 EbEd sin θb sin θd

Ea − | ⃗p a |cos θd + Eb − Eb cos θbd



Inelastic scattering
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• Inelastic scattering rate 

• Higher-twist: collinear expansion (  ) 

    

• Medium information absorbed in  — calculated using elastic scattering 

• Monte Carlo simulation

⟨k2
⊥⟩ ≪ l2

⊥ ≪ Q2

dΓinel
a

dzdl2⊥
=

dNg

dzdl2⊥dt
= 6αsP(z)l4

⊥ ̂q
π(l2⊥ + z2M2)4 sin2 ( t − ti

2τf )
̂q ≡ d⟨p2

⊥⟩/dt

Pinel = ΓinelΔt →

[ Majumder PRD 85 (2012); Zhang, Wang 
and Wang, PRL 93 (2004) ]

jet (p)

g (l)

(k)



Monte-Carlo simula?on
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Number n of radiated gluons during Δt – Poisson distribution:

Probability of inelastic scattering during Δt:

<Eg> from our MC simulation agrees with the semi-analytical result. 

1. Calculate            and thus  

2. If gluon radiation happens, sample n from 

3. Sample E and p of gluons using the differential 

spectrum 

4. Assume 2->2 first and adjust E and p of the 2+n 

final partons together to guarantee E-p 

conservation of 2->2+n process 



Elastic vs. inelastic energy loss

40

Divide scattering probability of jet parton into two regions 

1. Pure elastic scattering without gluon emission:  

2. Inelastic scattering:  

Total probability: 

Pel(1 − Pinel)
Pinel

Ptot = Pel + Pinel − PelPinel

• Elastic and inelastic energy losses are 
comparable at early time 

• Inelastic process dominates at large time

Ptot = 1 − e−(Γel+Γinel)Δt

= (1 − e−ΓelΔt) + (1 − e−ΓinelΔt)
−(1 − e−ΓelΔt) × (1 − e−ΓinelΔt)



Jet propagation through hydrodynamic medium
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QGP medium 
Hydrodynamics

energetic partons 
LBT

∂μTμν = 0 1
p ⋅ u

pμ∂μ f = 2

local medium information 

ϵ, T, u …

linear approximation 
X



Mass effects on elastic vs. inelastic energy loss

42

• Collisional energy loss dominates at low energy, radiative dominates at high energy  
• Crossing point: 7 GeV for charm quark, 18 GeV for bottom quark 

•  holds. Why similar RAA between light hadron, D and B?ΔEb < ΔEc < ΔEu/d/s < ΔEg

charm quark (mc = 1.5 GeV) bottom quark (mb = 5.0 GeV) 



Flavor hierarchy of jet quenching
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NLO initial production and fragmentation + Boltzmann transport (elastic and inelastic energy loss) 
+ hydrodynamic medium for QGP
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charged hadron D meson

• g-initiated h & D RAA < q-initiated h & D RAA => ΔEg > ΔEq > ΔEc holds 

• Although RAA (c->D) > RAA (q->h), RAA (g->D) < RAA (g->h) due to different fragmentation 
functions => RAA (h) ≈ RAA (D) 



Flavor hierarchy of jet quenching
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• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson RAA’s 
starting from pT ~ 8 GeV

• Predict RAA separation between B and h / D below 40 GeV, but similar values above – wait for 
confirmation from future precision measurement

•

[ Xing, Cao, Qin and Xing, Phys. 
Lett. B 805 (2020) 135424 ]
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Introducing non-perturbative interactions for low pT heavy quarks
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• Suppression of radiative energy loss due to the “dead cone effect” 
• Heavy quark diffusion, diffusion coefficient  or Ds as important input into transport modelsκ

LO

NLO

Perturbation calculation fails at low pT

• LO: Svetitsky, PRD 37 (1988) 
            Moore and Teaney, PRC 71 (2005) 
• NLO: Caron-Huot and Moore, JHEP 02 (2008) 
• A factor of over 5 increase at NLO

Inputs from lattice calculations
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• Uncertainty is still large 
• No results for finite momentum HQ yet



Perturbative calculation with effective propagator approach
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Yukawa (color coulomb) String

Parameters can describe the lattice potential
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RAA and v2 of D mesons at LHC
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• At high pT, the Yukawa interaction dominates heavy-quark-medium interaction 

• At low to intermediate pT, the string interaction dominates, stronger contribution at 
later evolution stage (near Tc)

Xing, Qin, Cao, arXiv:2112.15062
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RAA and v2 of D mesons at RHIC
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• Effects of string interaction are crucial for the pT regime studied at RHIC 

• Combination of short-range Yukawa and long-range string interactions provide a 
reasonable description of the D meson RAA and v2

Xing, Qin, Cao, arXiv:2112.15062
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Transport coefficients — ̂q
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• Yukawa interaction dominates at high temperature and high momentum 

• String interactions dominates at low temperature and low momentum

Temperature dependence Momentum dependence



Transport coefficients — Ds
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Temperature dependence Momentum dependence

0 20 40 60 80 100
p (GeV)

0

5

10

15

20

D
s (2

πT
)

T = 200 MeV
T = 300 MeV
T = 600 MeV

1 2 3 4
T/Tc

0

5

10

15

20

25

30

D
s(2
πT
)

c-quark Lattice Ding et al.
HQ Lattice Banergee et al.
p = 5 GeV
p = 10 GeV
p = 50 GeV

• Stronger temperature dependence at lower momentum 

• Different momentum dependence at different temperature



From Boltzmann to Fokker-Plank equation
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Boltzmann equation:

Collision integral:

Small k approximation:

Fokker-Plank equation:



Physical meanings of A and B
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Recall: 

Scattering rate: number per unit time

Define: , average change of X per unit time⟨X( ⃗p )⟩ = ∫ d3kw( ⃗p , ⃗k )X( ⃗p )

Decomposition:



Physical meanings of A and B
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Longitudinal drag 

Longitudinal diffusion 

Transverse diffusion

Fokker-Plank:

Stochastic realization of Fokker-Plank: Langevin equation 



Langevin equation
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 : Gaussian-normal distributed random (stochastic) variable⃗ρ

Connection to Fokker-Plank:

Summary of different transport equations: 

Boltzmann equation (in the limit of small momentum transfer )  

Fokker-Plank equation (in the limit of multiple scatterings)  

Langevin equation, e.g. heavy quarks inside QGP 

Langevin may be used in complex systems where Boltzmann is not applicable (e.g. water)

| ⃗k | ≪ | ⃗p | →
→



From single to multi-stage jet evolution
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High     Low , require a framework that combines different physics of medium modification Q2 → Q2

• In high virtuality phase (DGLAP/radiation phase):  , so rare scatterings 
• Scale continues to drop as scattering is rare

• In the low virtuality phase (BDMPS/transport phase)   
• Each scattering is equally important and sum of scatterings much larger than vacuum term 

̂qτ ≪ l2
⊥ ∼ μ2

̂qτ ∼ l2
⊥ ∼ μ2



Examples of multi-stage approach
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Example 1: DGLAP + transport evolution [ Cao, Majumder, Qin and Shen, PLB 793 (2019) ] 

Scale 1 ( ): HQ fragmentation function (FF) is treated with the DGLAP equation  

• Input 1: medium-modified splitting function (higher-twist) 

                   

• Input 2: FF at a low scale  

    Extracted from transport model (in scale 2) — medium modified FF at  

Scale 2 ( ): Transport model with the rate equation (elastic + inelastic) 

                  

Q ≫ MHM

P(y, Q2) = Pvac(y) + Pmed(y, Q2)

D(z, E, Q2
0)

Q0 ∼ MHM

Q ∼ MHM

Γinel(t) = ∫ dy∫ dl2
⊥

dN
dydl2⊥dt



Multi-scale evolution of the b-quark fragmentation function
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Semi-analytical calculation [ Cao et. al., PLB 793 (2019) ] 
 full Monte-Carlo simulation — JETSCAPE→



Examples of multi-stage approach
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Example 2: Full Monte-Carlo simulation — JETSCAPE [ https://jetscape.org ]

Stage 1: High Q and high E — medium-modified shower (MATTER); 

lose Q faster than E [ Majumder and Putschke, PRC 93 (2016) ] 

Stage 2: low Q and high E — transport (LBT or MARTINI) 

Stage 3: low Q and low E — energy loss (strongly coupled approach)

https://jetscape.org


Effects of different stages on the hadron RAA
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Dependence on Q0 (central Pb-Pb collisions)

• Partons with larger E hit Q0 later  MATTER 

dominates high pT, LBT low pT 

• Larger Q0 leads to shorter MATTER evolution 

 LBT contribution is larger 

• Setup of dynamical Q0:  

     ,         

      

→

→

Q2
0 = q̂⌧f ⌧f = 2E/Q2

0

→ Q2
0 =

p
2Eq̂



Examples of multi-stage approach
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Example 3: Boltzmann (BM) + Langevin (LV) transport 

• BM: scattering between quasi-particles 

• BM + small momentum transfer (k) => LV 

• LV deviates from BM when k<<p (or M/T>>1) is not satisfied 

• LV can be extended to non-quasi-particle medium where BM 
does not apply [ EMMI, NPA 979 (2018) ]

Neither BM nor LV alone is sufficient for HQ interaction with QGP!

Lido (Linearized Boltzmann with diffusion model) (Duke) [ Ke, Xu and Bass, PRC 98 (2018) ]

small k (<k0)  
HQ cannot “see” 
quasi-particles 
Langevin

large k (>k0)  
HQ “sees” 
quasi-particles 
Boltzmann
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Single inclusive jet RAA
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• Jet observables require treatment of secondary partons from splittings and 
recoiled partons 

• Parton showers in pp collisions are simulated with Pythia 

• Medium modification is simulated with LBT 

• Jets are reconstructed with anti-kT algorithm at the parton level



Single inclusive jet vn
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• Effects of energy loss, geometry and fluctuations, etc.

v2 v3



Correlation between soft and hard vn
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100 < pjet
T < 120 GeV 200 < pjet

T < 220 GeV

• Possible constraints on the path length dependence of jet energy loss



Gamma-jet yield and asymmetry
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8Jγϕ πΔ >

80TP GeVγ >60 80TGeV P GeVγ< <50 60TGeV P GeVγ< <40 50TGeV P GeVγ< <

       

0-30%

| | 1.44
30

| | 1.6
Tjet

jet

P GeV
γη

η

<

>

<

The golden channel for studying jets – high pT photons provide unmodified baselines, no “surface 
bias” in triggered events that di-jets suffer



Nuclear modification of hadrons triggered by gamma-jet
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, different pγ
T > 10 GeV ph

T

with trigger



Di-hadron/jet asymmetry

66

•  

• Density distribution of the initial 

production points: (a) xT ∈ [0.2, 0.4], (b) 

xT ∈ [0.4, 0.6], (c) xT ∈ [0.6, 0.8], and (d) 

xT ∈ [0.8, 1.0]. 

• Di-hadron asymmetry helps locate the 

region of production vertex of hard 

partons.

xT = min(pD
T , pD̄

T )/ max(pD
T , pD̄

T )

cc̄



D meson RAA in different systems
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Liu, Xing, Wu, Qin, Cao, Xing, PRC 105 (2022) 4, 044904

• Clear hierarchy of RAA with respect to the system size 

• Significant RAA in the small O-O system, existence of QGP 

• Scaling of RAA with the system size (quantified by Npart) across different collision systems

O-O

Ar-Ar

Xe-Xe

Pb-Pb



D meson v2 in different systems
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Li, Xing, Wu, Cao, Qin, EPJC 81 (2021) 11, 1035

• Energy loss effect: for a given centrality, v2 increases with the system size  

• Geometry effect: for a given Npart, v2 increases from O-O, Ar-Ar, Xe-Xe to Pb-Pb



Scaling of  with respect to Npartv2/ε2
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Li, Xing, Wu, Cao, Qin, EPJC 81 (2021) 11, 1035

• Separate energy loss and geometry effects by rescaling heavy quark  with bulk  

•  scales with the system size across different collision systems 

v2 ε2

v2/ε2



Extraction of QGP properties from model-to-data comparison
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Medium response to jet propagation
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Soft hadron emission Hard probes Disturb the liquid and study the 
propagation of the perturbation

Novel method

+
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Different implementations of medium response 
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Concurrent simulation of jet and medium (CoLBT-hydro)
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Effects on experimental observables
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Monte-Carlo method
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A view of Monte Carlo, Monaco



Why Monte-Carlo
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Splitting function:

Energy taken away from the quark: 

• E on the RHS does not change with parton evolution 
• Do not naturally include energy fluctuation, average energy loss only 
• Hard to include other fluctuations with the presence of medium

Number of emitted gluon:

Limits of semi-analytical calculation



Monte-Carlo method
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Monte Carlo methods are computational algorithms that rely on repeated 
random sampling based on probability distributions to obtain numerical 
results – naturally include quantum fluctuations in realistic physics 
processes and connect theories and experiments. 

• Use Ng (if Ng << 1, otherwise e-Ng) as the probability of splitting 

• If a splittings happen, sample x using P(x) and take energy xE away from 
parent quark 

• Repeat the process to obtain numerical results of multiple splittings



MC sampling: hit-or-miss method
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If the maximum of f(x) ≤ fmax in the range where 
we want to sample x: 

1. Select an x with even probability in the 
allowed range: x = xmin+R(xmax−xmin);  

2. Compare a (new) Rfmax with  f(x);  

    if Rfmax ≤  f(x), accept x; 

3. Otherwise repeat 1 and 2 until x is found.

fmax

xmin xmaxx

Rfmax



Hit-or-miss: example
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Example: sample medium-induced gluon spectrum (x and k⏊)

1. Calculate Ng within Δt at given E, T and t (record fmax when evaluating integral);

2. If emission happens sample x and k⏊ independently within physical ranges; 

3. Compare a new Rfmax  with f(x,k⏊), accept x and k⏊ if Rfmax ≤  f(x,k⏊); 

4. Otherwise repeat 2 and 3 until x and k⏊ are found. 



MC sampling: inverse-primitive-function method
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xmin xmax

F(xmax)

u = RF(xmax)

1. Find the primitive function of  f(x): 

2. Sample a random number u in [0, F(xmax)] with 
RF(xmax); 

3. Solve x with the inverse function of F(x): 

Efficient when the analytical solution of the inverse 
function exists. Still doable even it does not exist.



Inverse-primitive-function: example
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Example: sample x from splitting function P(x) [used in MATTER]

1. Calculate the integrated splitting function (primitive function);

2. Sample a random number u in [0, F(xmax)] with RF(xmax); 

3. Solve                      numerically (bisection method) -- 

    (a) set xmid = (xmin+xmax)/2;  

    (b) if F(xmid) < u, set xmin = xmid; if F(xmid) > u, set  xmax = xmid;  

    (c) Repeat (a) and (b) until |F(xmid)-u| < ε, and then x = xmid.



MC sampling: combined method
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Assume the existence of a function g(x), with f(x) ≤ g(x) over the x range 
of interest. Here g(x) is picked to be a “simple” function, such that the 
primitive function G(x) and its inverse G−1(x) are known.  

1. Select an x according g(x) using the inverse primitive function method;  

2. Compare a (new) Rg(x) with the ratio f(x); if Rg(x) ≤ f(x) accept x;  

3. Otherwise repeat 1 and 2 until x is found. 


