Measuring λ_{WZ} through tree-level interference

Yongcheng Wu Nanjing Normal University SYSU-PKU Collider Physics Forum 2022-08-24

> Daniel Stolarski, **YW**; Phys. Rev. D 102 (2020) 033006; 2006.09374 Chaitanya Paranjape, Daniel Stolarski, **YW**; 2203.05729

- Electroweak Symmetry Breaking
 - $\kappa_V, \kappa_f, \kappa_3$ etc
- Current Measurement:

- Electroweak Symmetry Breaking
 - κ_V, κ_f etc

Current Measurement:

vcwu@njnu.edu.cn

- Electroweak Symmetry Breaking
- Prospects: Total Statistical CMS Ŵ ż 1.4 E 1.05 1.05 Theory 1.2 .00 -1.0 1 00-¥ κ_{ν} 0.8E n 95 0.95 0.6 κ_W 0.4 2.0 F γ ģ κ_{z} 1.05 1.5 κ_{q} ¥ 1.0 1.00ŧ٦. 0.5 ĸ 0.0 $\kappa_{\rm b}$ 2.0 b t 1.5 κτ ¥ 1.0 1.00κ_u 0.5 $\kappa_{Z_{\nu}}$ 0.0 ů. 1.4 0.02 0.04 0 1.05 1.2 1.0 .00-¥ 0.8 0.95 0.6 E 0.4 E 0.2 F 0.0 Discovery LHC Run 1 This paper HL-LHC ♦ Obs. (stat ⊕ syst) stat Proi. (stat ⊕ svst) svst

CMS: 2207.00043

8/24/22

- 1902.00134/1902.10229
- ATL-PHYS-PUB-2018-054
- CMS-PAS-FTR-18-011

- Electroweak Symmetry Breaking
- Prospects:

Electroweak Symmetry Breaking

•
$$\kappa_W, \kappa_Z \qquad \qquad \mathcal{L} = gm_W h \left(\kappa_W W^+ W^- + \frac{\kappa_Z}{2c_W^2} Z^2\right)$$

•
$$\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z}$$
 $\lambda_{WZ} = 1$ For SM

• Georgi-Machacek Model:

•
$$\lambda_{WZ} = -\frac{1}{2}$$
 for Fiveplet

- Current Measurement:
 - LHC Run I: ATLAS+CMS, 1606.02266
 - $\lambda_{WZ} \in [-1.10, -0.73] \cup [0.72, 1.10]$
 - CMS Run II 35.9 fb⁻¹: CMS: 1809.10733

λ_{WZ} Measurements

- Interference Effects are needed to resolve the sign
- Tree/loop interference: 1608.02159

- Tree level interference:
 - $f\bar{f} \to W^+W^-h$ 1805.01689

Proposed Process

- Processes:
 - Tree-level interferences
 - $W^{\pm}Z \to W^{\mp}h$
 - $W^+W^- \rightarrow Z h$

• VBF nature suitable for Higher energy collider

$2 \rightarrow 2$ Processes

- $VV \rightarrow Vh$ Processes:
 - $W^+W^- \rightarrow Zh$
 - $W^{\pm}Z \rightarrow W^{\pm}h$
- Parameterization:

•
$$\mathcal{L} = gm_W h \left(\kappa_W W^+ W^- + \frac{\kappa_Z}{2c_W^2} Z^2 \right)$$

•
$$\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z}$$

	$\mathcal{M}_{s/t}$	$\mathcal{M}_s + \mathcal{M}_t$	$d\sigma_{s/t}$	$d\sigma_{ m tot}$
TTT	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$	$\frac{1}{s^2}$	$\frac{1}{s^2}$
LTT	s^0	s^0	$\frac{1}{s}$	$\frac{1}{s}$
LLT	\sqrt{s}	$\frac{1}{\sqrt{s}}$	s^0	$\frac{1}{s^2}$
LLL	s	s^0	s	$\frac{1}{s}$

 κ_Z

 κ_W

$2 \rightarrow 2$ Processes

- $VV \rightarrow Vh$ Processes:
 - $W^+W^- \rightarrow Zh$
 - $W^{\pm}Z \rightarrow W^{\pm}h$
- Parameterization:

•
$$\mathcal{L} = gm_W h \left(\kappa_W W^+ W^- + \frac{\kappa_Z}{2c_W^2} Z^2 \right)$$

• $\lambda_{WZ} = \frac{\kappa_W}{u}$

• For $W_L W_L \rightarrow Z_L h$:

KZ

- $\mathcal{M}_{s}(W_{L}^{+}W_{L}^{-} \rightarrow Z_{L}h) = \frac{\kappa_{Z}g^{2}\cos\theta}{4\,m_{W}^{2}}\left(s m_{h}^{2} + 2m_{Z}^{2}\right) + \mathcal{O}\left(\frac{1}{s}\right)$
- $\mathcal{M}_t(W_L^+W_L^- \to Z_L h) = \frac{\kappa_W g^2}{4m_W^2} \left(\cos\theta \left(-s + 2m_W^2 + m_Z^2 m_h^2\right) + \frac{8m_W^2\cos\theta}{\sin^2\theta}\right) + \mathcal{O}\left(\frac{1}{s}\right)$

 κ_Z

•
$$\mathcal{M}(W_L^+ W_L^- \to Z_L h) = \kappa_Z \frac{g^2 c_\theta}{4m_W^2} (1 - \lambda_{WZ}) s + \mathcal{O}(s^0)$$

Grow with Energy unless the parameter takes the exactly SM value

The energy dependence will be cut-off at new physics scale Λ

ycwu@njnu.edu.cn

 κ_W

@ Lepton Collider

- CLIC (or future Muon Collider)
 - High C.M. Energy
- Processes:
 - $\ell^- \ell^+ \to \ell^\pm \nu W^{\mp} h$
 - $\ell^-\ell^+ \to \nu \nu Z h$

@ Lepton Collider

- CLIC (or future Muon Collider)
 - High C.M. Energy
- Processes:
 - $\ell^- \ell^+ \to \ell^\pm \nu W^\mp h$
 - $\ell^- \ell^+ \to \nu \nu Z h$

• $\sigma = \kappa_W^2 \sigma_W + \kappa_W \kappa_Z \sigma_{WZ} + \kappa_Z^2 \sigma_Z^2$

σ [fb]		W	h	Zh		
$\sqrt{s} [\text{GeV}]$		$P(e^{-}) = -80\%$	$P(e^-) = 80\%$	$P(e^{-}) = -80\%$	$P(e^-) = 80\%$	
	σ_Z	$6.81 imes 10^{-3}$	2.46×10^{-3}	1.08×10^{-2}	$2.91 imes 10^{-3}$	
350	σ_W	$3.85 imes10^{-2}$	8.27×10^{-2}	$1.49 imes10^{-2}$	$1.65 imes 10^{-3}$	
	σ_{WZ}	-3.94×10^{-3}	-2.22×10^{-3}	$-1.03 imes10^{-2}$	$-1.16 imes10^{-3}$	
1500	σ_Z	8.25×10^{0}	3.18×10^{0}	$3.85 imes 10^0$	4.25×10^{-1}	
	σ_W	$1.22 imes 10^1$	4.11×10^{0}	6.85×10^0	$7.66 imes10^{-1}$	
	σ_{WZ}	$-1.28 imes 10^1$	$-5.46 imes10^{0}$	-5.38×10^0	$5.93 imes10^{-1}$	
3000	σ_Z	$3.51 imes 10^1$	1.34×10^1	1.87×10^1	2.09×10^0	
	σ_W	$4.31 imes 10^1$	$1.50 imes 10^1$	$2.97 imes 10^1$	3.27×10^{0}	
	σ_{WZ}	-6.32×10^1	$-2.52 imes 10^1$	$-3.13 imes 10^1$	-3.45×10^{0}	

@ Lepton Collider

- CLIC (or future Muon Collider)
 - High C.M. Energy
- Processes:
 - $\ell^- \ell^+ \to \ell^\pm \nu W^\mp h$
 - $\ell^-\ell^+ \to \nu \nu Z h$
- Decays:
 - Leptonic Decay of W/Z
 - $h \rightarrow b \ \overline{b}$
- Final states:
 - Two b-jets
 - Two isolated leptons

• Backgrounds:

$$\begin{split} e^-e^+ &\rightarrow t\bar{t} \rightarrow b\bar{b}\ell^-\ell^+\nu_\ell\bar{\nu}_\ell, \\ e^-e^+ &\rightarrow e^\pm\nu_eW^\pm Z \rightarrow e^\pm\nu_e\ell^\mp\nu_\ell b\bar{b}, \\ e^-e^+ &\rightarrow \nu_e\bar{\nu}_eZZ \rightarrow \nu_e\bar{\nu}_e\ell^-\ell^+b\bar{b}, \\ e^-e^+ &\rightarrow Zh, Z \rightarrow \ell^-\ell^+, h \rightarrow b\bar{b}, \\ e^-e^+ &\rightarrow ZW^+W^-, Z \rightarrow b\bar{b}, W^+ \rightarrow \ell^+\nu_\ell, W^- \rightarrow \ell^-\bar{\nu}_\ell, \\ e^-e^+ &\rightarrow ZZZ, Z \rightarrow b\bar{b}, Z \rightarrow \ell^-\ell^+, Z \rightarrow \nu_\ell\bar{\nu}_\ell. \end{split}$$

Total Rate @ Lepton Collider

The cuts to extract the signal events

Total Rate @ Lepton Collider

• Cut Flow:

 $\kappa_W = 1, \kappa_Z = 1$ **P**(**e**⁻) = -**0**.8

σ (fb)		$\sqrt{s} = 3.0 \text{ TeV}, \mathcal{L} = 4 \text{ ab}^{-1}$			$\sqrt{s} = 1.5 \text{ TeV } \mathcal{L} = 2 \text{ ab}^{-1}$		
		Before Cuts	$Wh ext{-Cuts}$	$Zh ext{-Cuts}$	Before Cuts	Wh-Cuts	Zh-Cuts
Signal $Wh(V)$ Zh(V)	Wh(VBF)	1.97×10^{0}	7.26×10^{-2}	1.36×10^{-3}	9.62×10^{-1}	6.54×10^{-2}	2.37×10^{-3}
	Zh(VBF)	$6.47 imes 10^{-1}$	3.49×10^{-3}	$7.21 imes 10^{-2}$	$2.03 imes 10^{-1}$	$1.30 imes 10^{-3}$	2.87×10^{-2}
	tt	1.17×10^{0}	$5.83 imes 10^{-4}$	$6.10 imes 10^{-6}$	4.65×10^{0}	$5.64 imes 10^{-3}$	$8.05 imes 10^{-5}$
BG	WZ(VBF)	4.47×10^0	$9.97 imes 10^{-3}$	2.16×10^{-4}	1.84×10^{0}	$5.86 imes10^{-3}$	1.96×10^{-4}
	ZZ(VBF)	1.92×10^{0}	4.21×10^{-4}	$8.07 imes 10^{-3}$	$5.92 imes 10^{-1}$	1.48×10^{-4}	$2.88 imes 10^{-3}$
	Zh	$5.88 imes 10^{-2}$	$1.83 imes 10^{-4}$	4.15×10^{-4}	$2.39 imes 10^{-1}$	4.10×10^{-4}	$1.12 imes 10^{-3}$
	ZWW	$4.01 imes 10^{-1}$	$1.14 imes 10^{-3}$	4.97×10^{-6}	$6.36 imes10^{-1}$	$2.02 imes 10^{-3}$	$1.72 imes 10^{-5}$
	ZZZ	$5.06 imes 10^{-3}$	$6.04 imes 10^{-7}$	1.12×10^{-5}	$9.79 imes 10^{-3}$	1.74×10^{-6}	2.34×10^{-5}
	\mathbf{Sum}	8.02×10^{0}	1.23×10^{-2}	8.72×10^{-3}	$7.97 imes 10^{0}$	1.41×10^{-2}	4.32×10^{-3}
		Precision $(\%)$	6.18	6.17	Precision $(\%)$	9.53	13.5

Total Rate @ Lepton Collider

• Benchmark point against SM at 95% C.L.

Benchmark	$\sqrt{s} = 3.0 \text{ TeV}$	$\sqrt{s} = 1.5 \text{ TeV}$	
$\kappa_W = \pm 1, \ \kappa_Z = \mp 1$	$3.4~{ m fb}^{-1}$	$14.1 { m ~fb^{-1}}$	
$\kappa_W = 1, \ \kappa_Z = 0$	$29.3~{ m fb}^{-1}$	$243.3~{ m fb}^{-1}$	
$\kappa_W = 0, \ \kappa_Z = 1$	$62.1~{ m fb^{-1}}$	$1772.4 {\rm ~fb^{-1}}$	

• For $\kappa_W, \kappa_Z, \lambda_{WZ}$

Distribution MeasurementDifferential Distribution

 $\sqrt{\hat{s}}$: Invariant mass of all visible products of Zh or Wh

Distribution Measurement

Differential Distribution

@ Hadron Collider

Small Cross Section

Cross Section @ Hadron Collider

Small Cross Section

• $\sigma = \kappa_W^2 \sigma_W + \kappa_W \kappa_Z \sigma_{WZ} + \kappa_Z^2 \sigma_Z$

$\sigma_{ m W}$	17.41 fb	
σ_{WZ}	-14.76 fb	
$\sigma_{\rm Z}$	12.41 fb	

20

Cross Section @ Hadron Collider

- Worse Background
 - $h \rightarrow b \ \overline{b}, \ z \rightarrow \ell \ell$

Processes	Cross Section [fb]
$p p \rightarrow z h j j$ Signal	~0.4
$p \ p o z \ h \ j \ j$ QCD	~0.9
$p p \rightarrow t t$	~5000
$p p \rightarrow z z j j$	~10
$p p \rightarrow z b b j j$	~1000

With Basic VBF cuts applied

Event Selection @ Hadron Collider

• $h \rightarrow b \ \overline{b}, \ z \rightarrow \ell \ell$

With Basic VBF cuts applied

Processes	Cross Section [fb]	Cross Section With Cuts [fb]	Efficiency
$p p \rightarrow z h j j$ Signal	~0.4	~0.002	5.0e-3
$p \ p o z \ h \ j \ j$ QCD	~0.9	~0.0001	1.1e-4
$p \ p o t \ t$	~5000	~0.003	6.0e-7
$p p \rightarrow z z j j$	~10	~0.0004	4.0e-5
$p p \rightarrow z b b j j$	~1000	~0.014	1.4e-5

- VBF topology
- Higgs Invariant Mass
- Z peak
- Center Jet Veto

Higgs @ Hadron Collider

- $h \rightarrow b \ \overline{b}$
- Will be boosted at the LHC $\sqrt{s} = 13 \sim 14 \ TeV$

Higgs @ Hadron Collider

- Higgs Will be boosted at the LHC $\sqrt{s} = 13 \sim 14 \ TeV$
- Boosted Higgs Tagging by BDRS algorithm

Result @ Hadron Collider

• In the $\kappa_W vs.\kappa_Z$ plane:

Summary

- VBF process:
 - $W^+W^- \to Zh$
 - $W^{\pm}Z \rightarrow W^{\pm}h$
- Tree level interferences, sensitive to the relation between κ_W and κ_Z
- Resolve the sign of λ_{WZ}
- Can be well probed at high energy colliders
 - Better at Lepton Collider
 - Possible to resolve the sign at the LHC

Thanks for your attention!

Backups

CMS: 1809.10733

 $\begin{array}{ll} \overline{\mathcal{B}_{\rm BSM}} = 0 \\ \hline Parameter & {\rm Best \ fit} \\ \kappa_Z & 1.00 \begin{array}{c} ^{+0.11}_{-0.11} \\ ^{+0.11}_{(-0.11)} \\ \\ \kappa_W & -1.13 \begin{array}{c} ^{+0.16}_{-0.13} \\ ^{+0.12}_{(-0.12)} \end{array} \end{array}$

HL-LHC: 1902.00134

			ATL	AS		
		3	000 fb	⁻¹ uncerta	ainty [%]	
		Total	Stat	SigTh	BkgTh	Exp
$\lambda_{ m WZ}$	S 1	2.7	0.9	1.5	1.3	1.5
	S2	2.2	0.9	1.0	1.0	1.4