Characterizing the Higgs boson and axionlike particles at muon collider

Xing Wang UC San Diego

SPeCial4Young Aug 31, 2022

T. Han, D. Liu, I. Low, XW [arXiv: 2008.12204] T. Han, T. Li, XW [arXiv: 2203.05484]

Content

- Introduction
- Higgs couplings at MuC
- Axion-like particles at MuC
- Conclusion

Lumi. > $\frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}}{10 \text{ TeV}}\right)^2 2 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$

Xing Wang, UCSD

Muon Collider

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
$ZZ \to H$	51	72	89	96	120
$WW \to HH$	0.80	1.8	3.2	4.3	6.7
$ZZ \to HH$	0.11	0.24	0.43	0.57	0.91

 $\mathcal{O}(10^6 - 10^8)$ Higgs $\Rightarrow \mathcal{O}(10^{-3} - 10^{-4})$ precision $\mathcal{O}(10^3 - 10^5)$ di-Higgs $\Rightarrow \mathcal{O}(10^{-2} - 10^{-3})$ precision

Higgs at MuC

Higgs and BSM

$$\mathcal{L} \supset \left(M_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_\mu Z^\mu \right) \left(\kappa_V \frac{2H}{v} + \kappa_{V_2} \frac{H^2}{v^2} \right) - \frac{m_H^2}{2v} \left(\kappa_3 H^3 + \frac{1}{4v} \kappa_4 H^4 \right)$$

• In terms of dim-6 EFT

$$\mathcal{O}_H = \frac{c_H}{2\Lambda^2} \partial_\mu (\Phi^{\dagger} \Phi) \partial^\mu (\Phi^{\dagger} \Phi) , \quad \mathcal{O}_6 = -\frac{c_6 \lambda}{\Lambda^2} (\Phi^{\dagger} \Phi)^3$$

$$\Delta \kappa_V = -\frac{c_H}{2} \frac{v^2}{\Lambda^2} , \qquad \Delta \kappa_{V2} = -2c_H \frac{v^2}{\Lambda^2} ,$$
$$\Delta \kappa_{V3} \approx -\frac{3c_H}{2} \frac{v^2}{\Lambda^2} + c_6 \frac{v^2}{\Lambda^2} , \qquad \Delta \kappa_4 \approx -\frac{25}{9} c_H \frac{v^2}{\Lambda^2} + 6c_6 \frac{v^2}{\Lambda^2}$$

Currently at LHC

$$\mathcal{O}\left(\frac{v^2}{\Lambda^2}\right) \sim \mathcal{O}(5\%) \quad \text{for} \quad \Lambda \sim 1 \quad \text{TeV}$$

Xing Wang, UCSD

Single Higgs Production

 $\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu H$ (WW fusion), $\mu^+\mu^- \to \mu^+\mu^- H$ (ZZ fusion).

Single Higgs Production

- Inclusive channel: events from WW fusion and from ZZ fusion without detecting muons
- Exclusive Iµ channel: events from ZZ fusion with at least one muon detected.

Single Higgs Production

Focus on the leading decay channel

 $H \to b \overline{b}$

 $p_T(b) > 30 \text{ GeV}, \quad 10^\circ < \theta_b < 170^\circ,$ $M_{\text{recoil}} = \sqrt{(p_{\mu^+} + p_{\mu^+} - p_H)^2} > 200 \text{ GeV}$

 $\Delta E/E = 10\%$
 $m_{b\bar{b}} = m_H ~\pm~ 15~{\rm GeV}$

Xing Wang, UCSD

V-V-H Coupling

• Single parameter fit:

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
$(\Delta \kappa_W)_{ m in}$	0.26%	0.12%	0.073%	0.050%	0.023%
$(\Delta \kappa_Z)_{ m in}$	2.4%	1.1%	0.65%	0.46%	0.20%
$(\Delta \kappa_Z)_{1\mu}$	1.7%	1.5%	1.5%	1.5%	1.5%

Statistical uncertainty only

 $\mu^+\mu^- \xrightarrow{VBF} HH + X$

 $\mathcal{A}(W_L^+ W_L^- \to HH) = \mathcal{A}_{\rm SM} + \mathcal{A}_1 \Delta \kappa_{W_2} + \mathcal{A}_2 \Delta \kappa_3$

 $\mathcal{A}_{\rm SM}, \ \mathcal{A}_2 \sim \text{constant}$ when $E \gg M_W$ $\mathcal{A}_1 \sim E^2$

Double Higgs Production

• Focus on the leading decay channel

 $BR(4b) \simeq 34\%$

 $p_T(b) > 30 \text{ GeV}, \quad 10^\circ < \theta_b < 170^\circ, \quad \Delta R_{bb} > 0.4$ paired by minimizing $(m_{j_1 j_2} - m_H)^2 + (m_{j_3 j_4} - m_H)^2$ $|m_{jj} - m_H| < 15 \text{ GeV}$

$$M_{\text{recoil}} = \sqrt{(p_{\mu^+} + p_{\mu^-} - p_{H_1} - p_{H_2})^2} > 200 \text{ GeV}$$

Xing Wang, UCSD

xiw006@physics.ucsd.edu

Double Higgs Production

 $\sigma = \sigma_{\rm SM} \left[1 + r_1 \Delta \kappa_{W_2} + r_2 \Delta \kappa_3 + r_3 \Delta \kappa_{W_2} \Delta \kappa_3 + r_4 \left(\Delta \kappa_{W_2} \right)^2 + r_5 \left(\Delta \kappa_3 \right)^2 \right]$

- Sensitive to H-H-H in low m_{HH} region.
- Sensitive to W-W-H-H in high m_{HH} region.

m_{HH} [GeV]	$\sigma_{\rm SM}$ [ab]	r_1	r_2	r_3	r_4	r_5
[0, 350)	15	-2.7	-1.7	7.6	6.7	2.6
[350, 450)	24	-3.4	-1.2	5.2	7.8	0.95
[450, 550)	24	-4.0	-0.91	4.6	12	0.52
[550, 650)	21	-4.6	-0.70	4.7	17	0.36
[650, 750)	17	-5.3	-0.60	5.1	26	0.28
[750, 950)	24	-6.9	-0.52	6.3	46	0.23
[950, 1350)	23	-11	-0.47	8.7	120	0.19
[1350, 5000)	15	-18	-0.30	7.2	240	0.075
	_	1		57		

 $\sqrt{s} = 10 \text{ TeV}$

H-H-H & W-W-H-H

Single parameter fit: •

•

Result Summary

Xing Wang, UCSD

xiw006@physics.ucsd.edu

Result Summary

- Great potential on Higgs precision measurement.
- Distinct/novel kinematical feature.

\sqrt{s} (TeV)	3	6	10	14	30	Comparison
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	$\begin{array}{c} 0.1\% \\ (68\% \text{ C.L.}) \end{array} \textbf{CLIC}$
$ZZH \ (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	$\begin{array}{c} 0.13\% \\ (95\% \text{ C.L.}) \end{array} \textbf{CEPC}$
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% , 1% CLIC/ (68% C.L.) FCC-hh
$HHH~(\Delta\kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% FCC-hh (68% C.L.) SppC

Axion-Like Particles at MuC

Xing Wang, UCSD

ALP Couplings

Axion interactions via dim-5 operators

$$\begin{aligned} \mathcal{L}_{eff} &= C_{\tilde{G}} \mathcal{O}_{\tilde{G}} + C_{\tilde{B}} \mathcal{O}_{\tilde{B}} + C_{\tilde{W}} \mathcal{O}_{\tilde{W}} + C_{a\Phi} \mathcal{O}_{a\Phi} \\ \mathcal{O}_{\tilde{G}} &\equiv -\frac{a}{f_a} G^i_{\mu\nu} \tilde{G}^{\mu\nu}_i , \quad \mathcal{O}_{\tilde{W}} \equiv -\frac{a}{f_a} W^j_{\mu\nu} \tilde{W}^{\mu\nu}_j , \\ \mathcal{O}_{\tilde{B}} &\equiv -\frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} , \quad \mathcal{O}_{a\Phi} \equiv i \frac{\partial^{\mu} a}{f_a} (\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi) , \end{aligned}$$

Axion couples to SM gauge bosons

$$\begin{aligned} \mathcal{L}_{eff} \supset &- \frac{g_{agg}}{4} a G^a_{\mu\nu} \tilde{G}^{\mu\nu}_a - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{g_{a\gamma Z}}{4} a F_{\mu\nu} \tilde{Z}^{\mu\nu} \\ &- \frac{g_{aZZ}}{4} a Z_{\mu\nu} \tilde{Z}^{\mu\nu} - \frac{g_{aWW}}{4} a W_{\mu\nu} \tilde{W}^{\mu\nu} , \\ g_{agg} &= \frac{4}{f_a} C_{\tilde{G}} , \ g_{a\gamma\gamma} = \frac{4}{f_a} (s_{\theta}^2 C_{\tilde{W}} + c_{\theta}^2 C_{\tilde{B}}) , \ g_{aZZ} = \frac{4}{f_a} (c_{\theta}^2 C_{\tilde{W}} + s_{\theta}^2 C_{\tilde{B}}) , \\ g_{a\gamma Z} &= \frac{8}{f_a} s_{\theta} c_{\theta} (C_{\tilde{W}} - C_{\tilde{B}}) , \ g_{aWW} = \frac{4}{f_a} C_{\tilde{W}} , \end{aligned}$$

18

Xing Wang, UCSD

Associated production

$$\mu^+\mu^- \to Va, \quad V = \gamma, Z$$

(a) Parton description (inclusive) $\sigma(\ell^+\ell^- \to F + X) = \int_{\tau_0}^1 d\tau \sum_{ij} \frac{d\mathcal{L}_{ij}}{d\tau} \hat{\sigma}(V_i V_j \to F),$ $\frac{d\mathcal{L}_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_{\tau}^1 \frac{d\xi}{\xi} \Big[f_i(\xi, Q^2) f_j(\frac{\tau}{\xi}, Q^2) + (i \leftrightarrow j) \Big]$ (b) Final state muons tagged (exclusive di-muon) $10^\circ < \theta_{\mu^{\pm}} < 170^\circ \qquad m_{\mu^+\mu^-} > 200 \text{ GeV}$ xiw006@physics.ucsd.edu

- At high energies,
 - Associated production goes flat
 - VBF has log-enhanced
 - Di-muon limited by angular cuts

$$g_{agg} = \frac{4}{f_a} C_{\tilde{G}} , \quad g_{a\gamma\gamma} = \frac{4}{f_a} (s_{\theta}^2 C_{\tilde{W}} + c_{\theta}^2 C_{\tilde{B}}) , \quad g_{aZZ} = \frac{4}{f_a} (c_{\theta}^2 C_{\tilde{W}} + s_{\theta}^2 C_{\tilde{B}}) ,$$

$$g_{a\gamma Z} = \frac{8}{f_a} s_{\theta} c_{\theta} (C_{\tilde{W}} - C_{\tilde{B}}) , \quad g_{aWW} = \frac{4}{f_a} C_{\tilde{W}} ,$$
22

Xing Wang, UCSD

Bounds @ MuC

- Consider decay channel $a \rightarrow \gamma \gamma$
- Leading backgrounds for
 - Associated production

$$\mu^+\mu^- \to V\gamma\gamma, \quad V = \gamma, Z$$

• Inclusive VBF

$$\mu^+\mu^- o \gamma\gamma~~{
m with}~{
m ISR}$$

Exclusive di-muon

$$\mu^+\mu^- \to \mu^+\mu^-\gamma\gamma$$

Basic cuts

$$p_T(\gamma) > 10 \text{ GeV}, \quad |\eta(\gamma)| < 2.5, \quad \Delta R_{\gamma\gamma} > 0.4$$

 $\frac{|m_{\gamma\gamma} - m_a|}{m_a} < 0.05$

Xing Wang, UCSD

Bounds @ MuC

• Discovery limits

$$N_{\rm SD} = \frac{S}{\sqrt{S+B}} = 5$$

Testing CP

Xing Wang, UCSD

xiw006@physics.ucsd.edu

Conclusion

- Muon colliders have great physics potential
- Hundreds of Millions Higgs produced
 - Higgs couplings to great precision
 - Test double Higgs production
- Search for Heavy ALPs
 - $\gamma\gamma$ -fusion dominates ALP production
 - Angular correlations can reveal the CP property

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
σ (fb): $WW \to H$	490	700	830	950	1200
$ZZ \to H$	51	72	89	96	120
$WW \to HH$	0.80	1.8	3.2	4.3	6.7
$ZZ \to HH$	0.11	0.24	0.43	0.57	0.91
$WW \to ZH$	9.5	22	33	42	67
$WW \to t\bar{t}H$	0.012	0.046	0.090	0.14	0.28
$WW \to Z$	2200	3100	3600	4200	5200
$WW \to ZZ$	57	130	200	260	420

Selection Efficiencies

\sqrt{s} (TeV)	3	6	10	14	30
$WW \to H: \epsilon_{\rm in} (\%)$	54	46	42	39	32
$ZZ \to H: \epsilon_{\rm in} (\%)$	57	49	44	41	35
Cross section $\sigma_{\rm in}$ (fb)	170	200	220	240	240
$ZZ \to H: \epsilon_{1\mu} (\%)$	11	2.7	0.84	0.37	0.071
Cross section $\sigma_{1\mu}$ (fb)	3.1	1.1	0.43	0.20	0.050
$VV \to HH: \epsilon_{hh} (\%)$	27	18	13	11	7.2
Cross section σ_{hh} (ab)	81	140	150	170	200

$\mu^+\mu^- \to HH + X$

 $\sigma = \sigma_{\rm SM} \left[1 + R_1 \Delta \kappa_{W_2} + R_2 \Delta \kappa_3 + R_3 \Delta \kappa_{W_2} \Delta \kappa_3 + R_4 \left(\Delta \kappa_{W_2} \right)^2 + R_5 \left(\Delta \kappa_3 \right)^2 \right]$

\sqrt{s} [TeV]	$\sigma_{\rm SM}$ [fb]	R_1	R_2	R_3	R_4	R_5
3 TeV	0.91	-3.5	-0.65	3.1	14	0.49
6 TeV	2.0	-3.9	-0.50	2.8	29	0.35
$10 { m TeV}$	3.6	-4.3	-0.43	2.7	54	0.29
14 TeV	4.9	-4.4	-0.38	2.6	80	0.25
$30 { m TeV}$	7.6	-4.4	-0.28	2.3	210	0.19

 $\Lambda \sim \sqrt{\frac{c_{H,6}}{\Delta \kappa}} v$

-							
\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	30 (90)	Comparison	
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% [43]	CUIC
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0	11	16	(68% C.L.)	CLIC
$ZZH (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]	CEPC
$\int \Lambda/\sqrt{c}_i \ (\text{TeV})$	2.1	2.6	3.2	3.6	5.3	(95% C.L.)	CLFC
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% [38], 1% [24]	CLIC/
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)	FCC-hł
$HHH (\Delta \kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% [22, 23]	FCC-hł
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.L.)	SppC

