Higgs decay to charmonia and the charm-quark Yukawa coupling

Yang Ma

Department of Physics and Astronomy University of Pittsburgh and INFN Bologna

September 7, 2022

Probe the Charm-Higgs coupling 00000

A lot of particle physics is missing in the Standard Model

- Why Electroweak Symmetry Breaking occurs? What is the history of the Electroweak Phase Transition?
- > The reason for the Hierarchy in Fermion Masses and their Flavor Structure
- The Nature of Dark Matter
- ▶ The origin of the Matter-Antimatter Asymmetry
- The generation of Neutrino Masses
- The cause of the Universe's accelerated expansion Dark Energy
- What are the quantum properties of Gravity?
- What caused Cosmic Inflation after the Big Bang?

The SM is silent about all above, BSM physics is at the core of it all

Probe the Charm-Higgs coupling 00000

Why Higgs?

A well understood and well tested model

Standard Model of Elementary Particles

- Model doesn't make sense without Higgs or something like it
- The Higgs is a scalar particle whose interactions with other particles are predicted in terms of the Higgs mass
- It provides masses to all other elementary particles

Higgs physics: A portal to new physics

- ► LHC has gone from discovery to precision
- A telescope to high scale physics
- Interplay of theory and experiment is important

Probe the Charm-Higgs coupling 00000

Measure the Higgs couplings

[Nature 607 (2022) 60]

Higgs to light fermion couplings are to be measured \Rightarrow The next task is charm quark

Measure the Charm-Higgs coupling: current status

Measuring $Hcar{c}$ coupling is not easy

- Small mass \Rightarrow Small branching fraction BR($H \rightarrow c\bar{c}$) $\simeq 2.8\%$
- ▶ Large QCD background at hadron colliders ⇒ Need *c*-tagging
- c-tagging is challenging

Current experimental searching

- $\blacktriangleright~\kappa$ framework: For $y_c^{
 m SM}=\sqrt{2}m_c/v$, set $y_c=\kappa_c y_c^{
 m SM}$
- ▶ $pp \rightarrow VH(c\bar{c})$: Need c-tagging
 - LHC Run 2: ATLAS $\kappa_c \le 8.5$ [2201.11428], CMS $1.1 < |\kappa_c| < 5.5$ [2205.05550]
 - Future HL-LHC: $\kappa_c \leq 3$. [2201.11428]
- $\blacktriangleright~$ Production of $c\bar{c}$ bound states via Higgs decay: $H\rightarrow J/\psi + \gamma$
 - Clean final states $J/\psi
 ightarrow \mu^+\mu^-$, avoid c-tagging
 - $\blacktriangleright~$ The rate is too low: $BR \sim 10^{-6}.$ [1306.5770, 1407.6695]
 - Result is less sensitive: $\kappa_c \leq 100$. [1807.00802, 1810.10056]

Probe the Charm-Higgs coupling

Higgs decay to charmonia in Non-relativistic QCD (NRQCD)

Separate the physics into two parts

- $\Gamma = \sum_{\mathbb{N}} \hat{\Gamma}_{\mathbb{N}}(H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathcal{O}^{h}[\mathbb{N}] \rangle,$
- Short distance coefficient (SDC):

 $\mathrm{d}\hat{\Gamma}_{\mathbb{N}} = \frac{1}{2m_{H}} \frac{|\mathcal{M}|^{2}}{\langle \mathcal{O}^{Q\bar{Q}} \rangle} \mathrm{d}\Phi_{3}$

Long distance matrix element (LDME) Related to the wave function at origin

$$\begin{split} \langle \mathcal{O}^{J/\psi} [^3S_1^{[1]} \rangle &= \frac{3N_c}{2\pi} |R(0)|^2, \; \langle \mathcal{O}^{\eta_c} [^1S_0^{[1]}] \rangle = \frac{N_c}{2\pi} |R(0)|^2, \\ \langle \mathcal{O}^{Q\bar{Q}} \rangle &= 6N_c, \; \text{for} \; {}^3S_1^{[1]}, \; \langle \mathcal{O}^{Q\bar{Q}} \rangle = 2N_c, \; \text{for} \; {}^1S_0^{[1]} \end{split}$$

Higgs decay to J/ψ and a photon

- $Hc\bar{c}$ diagram is suppressed \Rightarrow Small branching fraction
- The dominant contribution is from $H\gamma\gamma$ diagram \Rightarrow Less sensitive to κ_c $\Gamma_{H\gamma\gamma^*} \simeq 1.32 \times 10^{-8} \,\text{GeV},$ $\Gamma_{\text{SM}} \simeq 1.00 \times 10^{-8} \,\text{GeV}$ [1306.5770,1407.6695]

Probe the Charm-Higgs coupling

Our idea: Look for a process with higher rate

 $H \to c + \bar{c} + J/\psi (\operatorname{or} \eta_c)$

Main contribution (Color-singlet):

Charm quark fragmentation to charmonia: ${}^3S_1^{[1]}(J/\psi)$ and ${}^1S_0^{[1]}(\eta_c)$

Compare with $H \rightarrow J/\psi + \gamma$

- ► Enhancement from the quark fragmentation ⇒ Larger rate
- The $Hc\bar{c}$ channel dominates \Rightarrow More sensitive to κ_c

More to calculate

- Corrections from QED and EW
- The color-octet mechanism

Background 0000 Charmonia production through the SM Higgs decay

Probe the Charm-Higgs coupling 00000

Summary and prospects O

More corrections from QED and EW sector

Pure QED diagrams: sizable correction to ${}^3S_1^{[1]}(J/\psi)$ production Single photon fragmentation (SPF): $1/q^2 = 1/m_{J/\psi}^2 \Rightarrow$ logarithmic enhancement

Electroweak correction from the HZZ diagrams

One of the Z can be on shell \Rightarrow resonance enhancement

 \bullet Sizable for ${}^1S_0^{[1]}(\eta_c)$ due to the larger axial $Zc\bar{c}$ coupling.

Probe the Charm-Higgs coupling

Summary and prospects O

Charmonium productiuon via color octet states A key property of NRQCD

- A quarkonium can also be produced through color-octet $Q\bar{Q}$ Fork states
- New states involved: ${}^3S_1^{[8]}$, ${}^1S_0^{[8]}$, ${}^3P_J^{[8]}$, and ${}^1P_1^{[8]}$
- The LDMEs $\langle {\cal O}^h[^{2S+1}L_J^{[{
 m color}]}]
 angle$ need to be fitted from experimental data

Reference	$\langle \mathcal{O}^{J/\psi}[{}^1S_0^{[8]}] angle$	$\langle \mathcal{O}^{J/\psi}[{}^3S_1^{[8]}] angle$	$\langle \mathcal{O}^{J/\psi}[^3P_0^{[8]}] angle/m_c^2$
G. Bodwin,	$(9.9 \pm 2.2) \times 10^{-2}$	$(1.1 \pm 1.0) \times 10^{-2}$	$(4.89 \pm 4.44) \times 10^{-3}$
K.T. Chao,	$(8.9 \pm 0.98) \times 10^{-2}$	$(3.0 \pm 1.2) \times 10^{-3}$	$(5.6 \pm 2.1) \times 10^{-3}$
Y. Feng,	$(5.66 \pm 4.7) \times 10^{-2}$	$(1.77 \pm 0.58) \times 10^{-3}$	$(3.42 \pm 1.02) \times 10^{-3}$

New diagrams for ${}^3S_1^{[8]}$

Single gluon fragmentation (SGF): $1/q^2 = 1/m_{J/\psi}^2 \Rightarrow$ logarithmic enhancement

Probe the Charm-Higgs coupling

Summary and prospects O

Color-singlet VS color-octet: Why is color-octet sizable

$$\Gamma = \sum_{\mathbb{N}} \hat{\Gamma}_{\mathbb{N}}(H \to (Q\bar{Q})[\mathbb{N}] + X) \times \langle \mathcal{O}^{h}[\mathbb{N}] \rangle$$

The color-octet LDMEs are suppressed In higher orders of v

$$\begin{split} & \frac{\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]})\rangle}{\langle \mathcal{O}^{J/\psi}(^3S_1^{[1]})\rangle} \sim \mathcal{O}(v^3), \quad \frac{\langle \mathcal{O}^{J/\psi}(^3S_1^{[8]})\rangle}{\langle \mathcal{O}^{J/\psi}(^3S_1^{[1]})\rangle} \sim \mathcal{O}(v^4), \\ & \frac{\langle \mathcal{O}^{J/\psi}(^3S_1^{[1]})\rangle}{\langle \mathcal{O}^{J/\psi}(^3S_1^{[1]})\rangle} \sim \mathcal{O}(v^4), \quad \frac{\langle \mathcal{O}^{\eta_c}(^3S_0^{[1]})\rangle}{\langle \mathcal{O}^{\eta_c}(^1S_0^{[1]})\rangle} \sim \mathcal{O}(v^3), \\ & \frac{\langle \mathcal{O}^{\eta_c}(^1P_1^{[8]})\rangle}{\langle \mathcal{O}^{\eta_c}(^1S_0^{[1]})\rangle} \sim \mathcal{O}(v^4) \end{split}$$

Short distance coefficient (SDC)

 The color factors are different for color-singlet and color-octet states

	Cha	rm frag	SPF	SGF	
	QCD	QED	QCD×QED	QED	QCD
CS	16/9	1	4/3	9	-
CO	2/9	8	-4/3	-	2

• There appear new diagrams: The SGF diagrams result in large ${}^{3}S_{1}^{[8]}$ SDC \Rightarrow Sizable color-octet contribution (mainly from ${}^{3}S_{1}^{[8]}$)

Probe the Charm-Higgs coupling

Standard Model results (I): The overall picture Numerical parameters

$$\begin{split} &\alpha = 1/132.5, \ \alpha_s(2m_c) = 0.235, \ m_c^{\rm pole} = 1.5\,{\rm GeV}, \ m_c(m_H) = 0.694\,{\rm GeV}, \ m_H = 125\,{\rm GeV}, \\ &m_W = 80.419\,{\rm GeV}, \ m_Z = 91.188\,{\rm GeV}, \ v = 246.22\,{\rm GeV}, \ y_c^{\rm SM} = \frac{\sqrt{2}m_c(m_H)}{\sqrt{2}m_c(m_H)} \approx 3.986\times 10^{-3}. \end{split}$$

Decay width and branching fraction

	QCD [CS]	QCD+QED [CS]	Full [CS]	Full [CO]	Full [CS+CO]
$\Gamma(H ightarrow c ar c + J/\psi)$ (GeV)	$4.8 imes 10^{-8}$	$5.8 imes 10^{-8}$	$6.1 imes 10^{-8}$	2.2×10^{-8}	$8.3 imes10^{-8}$
$BR(H \to c\bar{c} + J/\psi)$	1.2×10^{-5}	1.4×10^{-5}	1.5×10^{-5}	5.3×10^{-6}	$2.0 imes 10^{-5}$
$\Gamma(H ightarrow c ar{c} + \eta_c)$ (GeV)	4.9×10^{-8}	5.1×10^{-8}	$6.3 imes 10^{-8}$	1.8×10^{-7}	2.4×10^{-7}
$BR(H \to c\bar{c} + \eta_c)$	$1.2 imes 10^{-5}$	$1.2 imes 10^{-5}$	$1.5 imes 10^{-5}$	$4.5 imes 10^{-5}$	$6.0 imes10^{-5}$

Charmonium energy distributions

11/21

Probe the Charm-Higgs coupling

Standard Model results (II): Who is contributing?

Color-octet contributions

	${}^{3}S_{1}^{[8]}$	${}^{1}S_{0}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{J}^{[8]}$	Total
$\Gamma(H \to c \bar{c} + J/\psi)$ (GeV)	2.0×10^{-8}	9.8×10^{-10}	-	2.2×10^{-10}	2.2×10^{-8}
$BR(H \to c\bar{c} + J/\psi)$	$5.0 imes 10^{-6}$	$2.4 imes 10^{-7}$	-	$5.3 imes 10^{-8}$	$5.3 imes 10^{-6}$
$\Gamma(H ightarrow c ar c + \eta_c)$ (GeV)	$1.8 imes 10^{-7}$	$3.6 imes10^{-11}$	$1.0 imes 10^{-10}$	-	$1.8 imes 10^{-7}$
$BR(H \to c\bar{c} + \eta_c)$	4.5×10^{-5}	$8.9 imes 10^{-9}$	2.5×10^{-8}	-	4.5×10^{-5}

Contributions with respect to QCD

$\hat{\Gamma}_{\mathbb{N}}/\hat{\Gamma}_{\mathbb{N}}^{\text{QCD}}$	${}^{1}S_{0}^{[1]}$	${}^{3}S_{1}^{[1]}$	${}^{1}S_{0}^{[8]}$	${}^{3}S_{1}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{0}^{[8]}$	${}^{3}P_{1}^{[8]}$	${}^{3}P_{2}^{[8]}$
QCD	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
QED	$1.1 imes 10^{-4}$	0.077	0.0073	$1.1 imes 10^{-5}$	0.0068	0.0073	0.0073	0.0073
QCD×QED	0.021	0.14	-0.17	0.0012	-0.15	-0.17	-0.17	-0.17
EW	0.24	0.051	0.28	$2.6 imes 10^{-4}$	1.4	0.29	0.33	1.5

- QCD is dominant in most of the Fock states
- SPF brings sizable OED correction to ${}^{3}S_{1}^{[1]}$, but it is forbidden for ${}^{1}S_{2}^{[1]}$
- **SGF** makes ${}^{3}S_{1}^{[8]}$ super large
- ► For ${}^{1}S_{0}^{[8]}$ and ${}^{3}P_{I}^{[8]}$, only quark fragmentation contributions \Rightarrow QED and QCD differ by a constant

EW correction is large since Z is closed to its mass shell

Probe the Charm-Higgs coupling

Standard Model results (III): Transverse momentum (p_T) distributions

Charmonium p_T distributions

Free charm quark p_T distributions

Worry about VMD ?

- $H \to J/\psi + c \bar{c}$
 - $\blacktriangleright~$ Larger decay rate: ${\rm BR}\simeq 2\times 10^{-5}$
 - Sensitive to $Hc\bar{c}$ coupling: QCD dominates
 - Other diagrams

 $\begin{array}{l} {\rm BR}(g^*g^*)\sim 2.5\times 10^{-6}, {\rm BR}(\gamma^*\gamma^*)< 2\times 10^{-7}\\ \bullet \, {\rm No \ need \ to \ worry \ about \ VMD} \end{array}$

Probe the Charm-Higgs coupling 00000

Summary and prospects O

$H \to J/\psi + \gamma$

- Small decay rate: ${\rm BR}\simeq 2.8 imes 10^{-6}$
- Insensitive to $Hc\bar{c}$ coupling $\Rightarrow \kappa_c \leq 100$

VMD dominates

• $\gamma^* \to J/\psi$ dominates over $Hc\bar{c}$ Two orders of magnitude larger.

Probe the Charm-Higgs coupling

Color-octet uncertainties from the LDMEs Color-octet contributions: ${}^{3}S_{1}^{[8]}$ dominates

	${}^{3}S_{1}^{[8]}$	${}^{1}S_{0}^{[8]}$	${}^{1}P_{1}^{[8]}$	${}^{3}P_{J}^{[8]}$	Total
$\Gamma(H \to c \bar{c} + J/\psi)$ (GeV)	$2.0 imes 10^{-8}$	9.8×10^{-10}	-	2.2×10^{-10}	$2.2 imes 10^{-8}$
$BR(H \to c\bar{c} + J/\psi)$	$5.0 imes 10^{-6}$	$2.4 imes10^{-7}$	-	$5.3 imes10^{-8}$	$5.3 imes10^{-6}$
$\Gamma(H ightarrow c ar c + \eta_c)$ (GeV)	$1.8 imes 10^{-7}$	3.6×10^{-11}	1.0×10^{-10}	-	$1.8 imes 10^{-7}$
$BR(H \to c\bar{c} + \eta_c)$	$4.5 imes 10^{-5}$	$8.9 imes 10^{-9}$	$2.5 imes 10^{-8}$	-	$4.5 imes 10^{-5}$

Take the ${}^3S_1^{[8]}$ LDME for the uncertainty estimation

 $BR(H \to c\bar{c} + J/\psi) = (2.0 \pm 0.5) \times 10^{-5}, \ BR(H \to c\bar{c} + \eta_c) = (6.0 \pm 1.0) \times 10^{-5}.$

Background 0000 Charmonia production through the SM Higgs decay

Probe the Charm-Higgs coupling

Summary and prospects O

Probe the $Hc\bar{c}$ coupling

Use the κ framework $y_c = \kappa_c y_c^{SM}$, BR $\approx \kappa_c^2 BR^{SM}$

Probe the Charm-Higgs coupling

Summary and prospects O

Some rough analysis

- $\blacktriangleright~$ Higgs production cross section at LHC $\sigma_H\sim 50~{\rm pb}$
- $\blacktriangleright~$ Expect HL-LHC $L\sim3\,{\rm ab}^{-1}$ at ATLAS and CMS and $L\sim0.3\,{\rm ab}^{-1}$ at LHCb
- Detection efficiency ϵ for the final state $c\bar{c}+\ell^+\ell^-$
- ► BR $(J/\psi \rightarrow \ell^+ \ell^-) \sim 12\%$, BR $(H \rightarrow J/\psi + c\bar{c}) \sim 2 \times 10^{-5}$
- Event number $N = L\sigma_H \epsilon \operatorname{BR}(H \to c\bar{c}\ell^+\ell^-) \approx 12 \kappa_c^2 \times \frac{L}{\operatorname{ab}^{-1}} \times \frac{\epsilon}{10\%}$
- $\blacktriangleright~$ Considering the statistical error only $\delta N \sim \sqrt{N}$ gives

$$\Delta \kappa_c \approx 15\% \times (\frac{L}{\rm ab^{-1}} \times \frac{\epsilon}{10\%})^{-1/2}$$

Detection efficiency ϵ :

- Double charm-tagging $(40\%)^2 \sim 16\%$
- \blacktriangleright Kinematic acceptance 50%
- Assume $\epsilon \sim 10\% \Rightarrow \Delta \kappa_c \sim 15\%$

Background 0000 Charmonia production through the SM Higgs decay 000000000

Probe the Charm-Higgs coupling $\circ \circ \bullet \circ \circ$

Summary and prospects O

Background from $pp \rightarrow J/\psi + X$

- ▶ Prompt J/ψ production BR $(J/\psi \rightarrow \mu^+\mu^-) \times \sigma(pp \rightarrow J/\psi) \simeq$ 860 pb Charm-tagging is needed.
- Estimate 75000 events for $pp \rightarrow J/\psi + c\bar{c}$ at a $3 \, ab^{-1}$ HL-LHC Corresponding to a $25 \, fb$ cross section Some kinematic cut may help.

Background 0000 Charmonia production through the SM Higgs decay

Probe the Charm-Higgs coupling

Background from $H \rightarrow J/\psi + b\bar{b}$

Color-octet contribution dominates

Charmonium energy distributions

Take the color-octet LDME uncertainty for error estimation

Probe the Charm-Higgs coupling

Summary and prospects O

More realistic discussions

- \bullet If there were no background: $\Delta\kappa_c\sim 15\%$
- However, there is background in the real world:
- Assume 10,000 background events after the election cuts at the HL-LHC
- Assume the detection efficiency $\epsilon \sim 10\%$
- The signal event number is given by

$$N = L\sigma_H \,\epsilon \,\mathrm{BR}(H \to c\bar{c}\ell^+\ell^-) \approx 12 \,\kappa_c^2 \times \frac{L}{\mathrm{ab}^{-1}} \times \frac{\epsilon}{10\%}$$

- Sensitivity $S \simeq N_{\text{signal}} / \sqrt{N_{\text{Background}}}$ \Rightarrow It is possible to reach 2σ for $\kappa_c \approx 2.4$.
- systematic effect $N_{\text{signal}}/N_{\text{Background}} = 2\%$ for $\kappa_c \approx 2.4$.

Summary and prospects

Higgs is special and important

- The Higgs sector is the portal to new physics beyond SM.
- Testing the SM mass generation mechanism helps BSM physics searches.
- The Yukawa couplings of the 3rd generation fermions are precisely measured
 Charm quark is the next target.

New approach to determine the Charm-Higgs coupling: $H ightarrow J/\psi + car{c}$

- The rate is larger due to the fragmentation enhancements
- There are both color-singlet and color-octet contributions
- The QED and EW corrections can be sizable, so need to be included
- The SM prediction gives $BR \sim 2 imes 10^{-5}$
- For a possible $3\,{
 m ab}^{-1}$ HL-LHC, with a 10% final state detection efficiency \Rightarrow $\Delta\kappa_c$ \sim 10%
- Assume there are 10,000 background events $\Rightarrow 2\sigma$ for $\kappa_c \simeq 2.4$

More work in progress:

- Background analysis, detector/systematic effects
- Better LDMEs fittings, higher order calculations/resummation ...

