Highlights of The Detector Technology and Computing at ICHEP 2022

Jianchun Wang 07/22/2022

- ICHEP is one of the most prominent conference in HEP. It started more than 70 years ago. The CEPC2022 at Bologna is the number XLI.
- The program is packed with interesting presentations (3 days parallel, 3 days plenary).
- Parallel sessions (July 7-9), total 17 scientific topics:

12) Operation, Performance and Upgrade (incl. HL-LHC) of Present Detectors

13) Detectors for Future Facilities, R&D, Novel techniques.

14) Computing and Data Handling (Maybe Weidong could do it next time).

- Plenary sessions (July 11-13)
 - Some detector design/construction/upgrade work or plans are included in more general talks of different experimental domains.
 - Computing session: computing infrastructure, and HEP software.

Many nice ideas from neutrino, DM experiments are not covered here.

Belle-II Upgrade

Three presentations on general upgrade, SVD performance, and DAQ

- ✤ Resumed physics in 2020.
- Target luminosity 6x10³⁵ cm⁻²s⁻¹, reached 4.7x10³⁴.
 + beam bkg issue. It needs machine consolidation.
- LS1 (2022-23) to complete PXD, and more robust TOP PMTs.
- ✤ Further upgrade in LS2(2026~27), and later > 2032

OI	Upgrade ideas scope and technology	Time scale
EPFETs	Adiabatically improved replacement of existing PXD system	LS2
MAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2
OI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI \ensuremath{SOI}	LS2
hin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2
DC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2
OP	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later
CL	Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.	> LS2
LM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later
rigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later
TOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2
PC	TPC option under study for longer term upgrade	> LS2

ATLAS Upgrade

- New muon chambers
 - Improved trigger efficiency/momentum resolution, reduced fake rate
- New tracker (ITk)
 - Less material & finer segmentation
- High Granularity Timing Detector (HGTD)
 - Improved pile-up separation and bunch-by-bunch luminosity
- EM calorimeter (LAr), hadronic calorimeter (Tile), and Muon detectors will have on- and off-detector electronics upgrade
- Upgraded TDAQ system
 - Single Level Trigger with 1 MHz output
- Upgraded luminosity detectors
 - 1% precision

Many separate talks on subdetectors, performance, etc.

07/22/2022

CMS Upgrade Plan

- CMS did not provide a general overview of the upgrade and detector program.
- I have one for what the Chinese teams are involved.

Upgrade I:

 Just like the ATLAS there are many presentations in "operation performance and upgrade" session

5

n at դ=0, թ_т=1GeV (µm) 00

olution

07/22/2022

ALICE 1

ALICE Upgrade

Muon chambers -

FCT

Compact **all-silicon tracker** with **high-resolution** vertex detector Superconducting magnet system **Particle Identification** over large acceptance: muons, electrons, hadrons, photons **Fast read-out** and online processing

open-cell carbon

closed

ALICE 3

Tracker

Vertex detector

TOF

ECAL

RICH

Absorber

Magnet

- To install at 2033-34
- R&D focuses on silicon technology
- Vertex detector retractable, and in the 2nd vacuum
- 3 (+1+1) other talks on preparation, performance and lumin measurements

ITS3

to install at LS3.

truly cylindrical detection layers

- One from each of Fcc-ee and CEPC on detector requirements, and IDEA detector concept.
- □ Not need to go to details here.

FCC-ee New Noble Liquid Ecal based

- HG ECAL: Pb+Lar, or W+LKr
- Drift chamber (or Si) tracker
- CALICE-like HCAL
- Coil in same cryostat as LAr

Drift Chamber

07/22/2022

Solenoid

2.0

1.5

DCH

R&D of TPC within LCTPC Collaboration

Pixel TPC for Z-Pole Running at CEPC and FCC-ee

Track Distortions in ILC TPC @ 250 GeV (L~10³⁴ cm⁻²):

- At ILC beam-beam effects are dominant: primary ion density 1-5 ions/cm³ → track distortions < 5 μm
- Gas amplification $10^3 \rightarrow$ ILC without gating leads to track distortions of 60 μ m \rightarrow gating device is needed

Track distortions @ CePC / FCC-ee:

- ✓ HZ-pole running $\rightarrow \gamma\gamma$ -background is very small \rightarrow pad / pixels are OK ion bkg. comparable to ILC @ 250 GeV
- ✓ Z-pole running (@10³⁶)→ primary ion density 1000 ions/cm³ → serious tracks distrotions O(mm); space charge effects could be calibrated (e.g. ALICE) ???
- ✓ Study pixel TPC to replace pad TPC for Z-pole running @ CEPC

Crucial considerations for FCC-ee / CEPC @ Z pole running:

- primary ionization of the gas;
- ions from the gas amplification stage;
- power consumption (no power pulsing possible;
- operation at 2 T during the Z-peak running;

✓ Ion backflow (IBF) can give a lot of additional charge
 → so IBF must be controlled (IBF = 5/1.5 → 80 / 14 um)
 ✓ Measuring IBF for Gridpix is a priority, expected O(1‰)

Future R&D needed:

Optimal pad size to improve track resolution;
 Pixel size > 200 um or large → cost reduction

Very healthy collaboration

R&D and Implementation of µ-RWELL

Developed in collaboration with CERN-EP-DT-MPT workshop

The features can be summarized:

- Spark suppression: presence of a resistive layer (Diamond-like Carbon) to quench sparks amplitude (like MM)
- Compactness: amplification stage
 (geometry like WELL and GEM) embedded
 in the PCB readout → multi-layer PCB std.
 industrial technology → mass production
 But the resistive layer introduces a local gain
 drop as the rate increases

For the **LHCb upgrade 2** muon system, the **IDEA** preshower and muon, several other experiments that did not present.

Resistive MicroMeGas Detectors

- Resistive MicroMeGas: cover readout copper strip/pad with a resistive insulator to suppress discharges
- Drift region of ~5 mm width (E~60 V/mm) & amplification region of ~100 μm (E~5 kV/mm) separated by a metallic micro-mesh, supported by 0.8 mm diameter pillars
- Geometrical & electrical configuration to guarantee a fast ion evacuation fundamental for high rate applications
- Demonstrated to be a solid detector technology for HEP.

20x20 cm² prototype

Two talks from the same group

- Small-pad resistive MMG prototypes were tested in high-rate environment (Xray, Fe55 source, π/μ beam)
- Irradiation and longevity test of Resistive Micromegas detector did not show sign of aging using both Ar:CO2 93:7 and Ar:CO2:iC4H10 93:5:2

Crystal Ecal (I)

Mu2e ECAL (CsI + SiPM)

QC ready, detector assembling started

CEPC ECAL vers

Diagonal Crystal bars + SiPM

Combine excellent energy resolution with superior imaging capabilities through fine 3D segmentation

Crystal Tower

A5202 unit (FERS-5200)

Calorimters (II)

Crytur YAG

Fomos

GAGG

Fomos

GAGG

Crytur

YAG

C&A GFAG

Crytur

YAG

Crytur

YAG

ILM

GAGG

Fomos

GAGG

LHCb ECAL Upgrade

GAGG / PS + W / Pb, PMT

Emphasize on timing

Time resolution above 5 GeV

Energy resolution of order $\sigma(E) / E \approx 10\% / \sqrt{E \oplus 1\%}$ can be read				
\checkmark	SHASHLIK	< 40 ps	$(4x4 / 6x6 / 12x12 \text{ cm}^2)$	
\checkmark	SPACAL Pb+Polystyrene	<25 ps	(3x3 cm ² cell size)	
\checkmark	SPACAL W+Polystyrene	< 20 ps	(2x2 cm ² cell size)	
\checkmark	SPACAL W+GAGG	< 20 ps	$(1.5 \text{x} 1.5 \text{ cm}^2 \text{ cell size})$	

 $\approx 10\% / \sqrt{E \oplus 1\%}$ can be reach

IDEA DR Calorimeter

(Cu, Sc/C fiber, SiPM/PMT)

Beam test of a prototype (EM) detecter at DESY and CERN

CALICE Calorimter Studies

Other New Ideas On Calorimters

CEPC ScintGlass HCAL

Crilin Prototype

- Crystal calorimeter with longitudinal information, for muon collider barrel.
- Lead Fluoride (PbF2) crystals readout by 2 series of two UV-extended 15µm pixel SiPMs each.
- Longitudinal segmentation and excellent timing resolution
- Timing information can be used to suppress beam induced background.

Silicon Pixel Detectors

TimeSpot:

- D Picosecond timing resolution with 3D trench Si sensor.
- \square 55x55 μm^2 pixel, potentially can be reduced to 28x28 μm^2
- □ Rad-hard as a candidate for LHCb upgrade 2 VELO.

Forward silicon tracker for EIC total ~2.2m², look into different technologies

MALTA Pixel diagram

MALTA Carrier Board

AC-LGAD

MALTA sensor diagram 512X512 Matrix

Features

- 10 μm/20 μm MCPs
- Glass/Ceramic body
- New internal support design → 373 cm² (97% active area)
- Gen-II → flexible pickup pattern modification
- ✤ Performance
 - High QE blue-sensitive photocathode (>30%)
 - ~1E7 Gain
 - Low Dark Rates
 - ~50 ps SPE, ~10 ps MPE
 - O(mm) position resolution depending on readout board
- Availability
 - Gen I Direct readout & Gen II Capacitively Coupled readout
 - High Rate Picosecond Photodetector (HRPPD 10 cm) in development

Applied on a RICH detector

Photon Detection

TORCH for low P PID

Optical Modules for IceCube-Gen2

U1/*Z*2/*Z*0*ZZ*

Neutrino and DM

nEXO – search for 0vββ with a 5-ton liquid xenon TPC

- Charge detection: anode plane of modular charge tiles (10 cm long and 6 mm pitch), readout with ASIC in LXe.
- Light detection: 4.5 m² of VUV SiPMs with ASIC readout in LXe.
- Electron lifetime: 10 ms
- Electric field: 400 V/cm

Other proposed detectors for FPF

	Experiment	Science Priority	Technology
	Faser 2	Long-live neutral particles decay	Large decay volume (super-conducting) magnetic spectrometer
	FASERnu2	Neutrino Interactions	Tungsten/Emulsion 20 tons. Veto and interface tracker for muons
Γ	AdvSND	Neutrino Interactions on/off axis	Hybrid electronic and tungsten/emulsion detector with had. cal.
Γ	FORMOSA	Milicharged particles	Scintillation bars with photomultiplier readout.
	FLArE	DM scattering and neutrino interactions	Liquid Argon TPC 10-20 tons

Computing Infrastructure – Plenary Talk by Stefano Piano

ATLAS

Globally distr. system of computing centers WLCG: Tier0 + 14 Tier1's + >150 Tier2's in >40 countries

Robust resource growth of pledged resources:

- □ Average +20% CPU and disk yearly growth
- □ Consistent with a 'flat budget' funding for computing centers
 - A de-facto adopted model across all Funding Agencies for the past 10 years
- □ CPU: > 1 million cores fully occupied today, Data ingestion tens of EB/year

Projections of Hardware Prices and Needs

Run 5 (u=165-200

Year

Year

Run 5 /u-165-20

Cost Projection

LHCb has a sharp increase due to trigger less readout for Run3

How can these challenges be overcome?

- Fully exploit the features offered by modern HW architectures
- flexible Towards а more and sustainable infrastructure
- Synergies and collaborations across scientific disciplines and with Industry partners
- Getting performant software and computing infrastructure requires significant investment in programming and computing skills

HEP Software – Plenary Talk by Heather Gray

- Characteristics of HEP experiments over the next decade
 - Increasingly sophisticated detectors, increased event data volume
 - Higher data rates
 - Increasing demands in physics precision
 - Need to explore unconventional signatures

Challenges/Opportunities

- Technology evolution: Increased concurrency, Increasingly diverse architectures
- Machine learning
- Data science, including python for scientific computing
- Open Source Software
- Funding constraints

HEP event rates and sizes

- Software plays a key role in essentially every component of modern HEP experiments
- Within HEP, software been going through a period of rapid evolution due to more demanding experimental requirements and changing hardware environment
- Key features include
 - Optimization and modernization
 - Movement towards common software
 - Increasing diversity of **hardware architectures**
 - Impact of machine learning
- This rapid development will need to continue in preparation for **future upgrades** such as the HL-LHC
- For further details, I encourage you to consult the excellent talks from the **parallel sessions**