Highlights of The Detector Technology
and Computing at ICHEP 2022

Jianchun Wang
07/22/2022



General Impression

« |CHEP is one of the most prominent conference in HEP. It started more than 70 years
ago. The CEPC2022 at Bologna is the number XLlI.

« The program is packed with interesting presentations (3 days parallel, 3 days plenary).

« Parallel sessions (July 7-9), total 17 scientific topics:
12) Operation, Performance and Upgrade (incl. HL-LHC) of Present Detectors ¢
13) Detectors for Future Facilities, R&D, Novel techniques. h
14) Computing and Data Handling (Maybe Weidong could do it next time).

« Plenary sessions (July 11-13)

Some detector design/construction/upgrade work or plans are included in more general talks
of different experimental domains.

Computing session: computing infrastructure, and HEP software. h

Many nice ideas from neutrino, DM experiments are not covered here.
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Belle-11 Upgrade
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Resumed physics in 2020.

KLM: Replacement of barrel RPC i i 35 2c-1 34
bl il ) L T Target luminosity 6x103° cms!, reached 4.7x103%.

electronics, possible use as TOF + beam bkg issue. It needs machine consolidation.

Belle IT Upgrades

* During LS2

/7
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(L TOP: Replace readout % LS1 (2022-23) to complete PXD, and more robust
- electronics to reduce size
A and power, replacement of TOP PMTS

MCP-PMT with extended
lifetime ALD PMT, study of
SiPM photosensor option

/7
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Further upgrade in LS2(2026~27), and later > 2032

=
electrons (7GeV m Upgrade ideas scope and technology
QCS replacement and , 7 “tir 3¢ ) DEPFETs Adiabatically improved replacement of existing PXD system LS2
IR redesign 7 " = A : DMAPS Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from LS2
///////’ 2 , ‘ L e ALICE ITS developed for ATLAS ITK.
VXD: options 7/;&:5" ' — SOI-DUTIP Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on  LS2
- DEPFET 7 - - sol
- Thin Strips Rasipans (H5eY) . . . o
- SOI-DUTIP Thin Strips Thin and fine-pitch double-sided silicon strip detector system replacing the current LS2
- DMAPS TRIGGER: Take advantage SVD and potentially the inner part of the CDC
of electronics technology cDC Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance < LS2
development. s e
CDC: Replacement of the readout Increase bandwidth, open
electronics (ASIC, FPGA) to improve possibility of new trigger TOP Replace readout electronics to reduce size and power, replacement of MCP-PMT with LS2 and later
radiation tolerance and x-talk orimitives extended lifetime ALD PMT, study of SiPM photosensor option
ECL Crystal replacement with pure Csl and APD; pre-shower; replace PIN-diodes with APD > LS2
photosensors.
KLM Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible  LS2 and later
. use as TOF
Th ree pl’ese ntatIOnS on genel‘a| u pg rade; Trigger Take advantage of electronics technology development. Increase bandwidth, open < LS2 and later
possibility of new trigger primitives
SVD performance, and DA
p ! Q STOPGAP Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger > LS2
TPC TPC option under study for longer term upgrade > LS2
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ATLAS Upgrade

Many separate talks on subdetectors, performance, etc.

07/22/2022

New muon chambers
o Improved trigger efficiency/momentum
resolution, reduced fake rate
New tracker (ITk)
o  Less material & finer segmentation
High Granularity Timing Detector (HGTD)
o  Improved pile-up separation and
bunch-by-bunch luminosity
EM calorimeter (LAr), hadronic calorimeter
(Tile), and Muon detectors will have on- and
off-detector electronics upgrade
Upgraded TDAQ system
o  Single Level Trigger with 1 MHz output
Upgraded luminosity detectors
o 1% precision



CMS Upgrade Plan

Upgrade I:
n 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 1.1
g° B84.3° 78.6° T3.1° 67.7° 62.5° 57.5° 52.8° 48.4° 44.3° 40.4° 36.8° n 1/3 Of CSC for ME4/2

E 8 - oo L B B S R T / CPPF for Muon L1-trigger
= CSCs
B RPCs 1.3 30.5°

. & & . - 142770
e & RB3 = - - M
;ﬁﬁ e @ @ I[El ~ _ isme % CMS did not provide a general overview
SIRR LsEE s 17 207 of the upgrade and detector program.
— " RB1 e | 45 x| B hE e 1.8 18.8° )
s — el 2 1 11 1 1o 170° | have one for what the Chinese teams
Solenoid magnet =] g :'_ :‘_- _{: | 2.0 154° are |nVOIVed
3 w b L - | 9 0° )
= “m F {5} IHE _— Eé ]‘%E « Just like the ATLAS there are many
, [ |5 (R ) £ gi; 190;" presentations in “operation performance
— 1 L s = and upgrade” session
T — Steel - E = 30 57°
tsr:::l:; ation 2  Station 3 Stationg _
— 40 21°
KR ¢ T A\
Upgrade |l Upgrade I Upgrade |l
HGCAL GE1/1, GE2/1+MEQ Muon trigger backend
IHEP/THU/ZJU/FDU PKU/THU/SYSU/BUAA IHEP
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. HCb Upqrade Plan

Magnet Stations (MS)
=  Scintillating bar
Side Vie = Low P particles

Vertex Locator (VELO)
= Pixel with timing

= New RF-foll

3D, LGAD, 28 nm

b T
T |

#silicon
P
¥ ¥

RICHI
........ UT

Mighty Tracker (MT)
*  MAPS CMOS pixel (inner)
Keep SciFi (outer)

Stave

:

Muon
=  PRWELL for inner regions '

36 modules, ~1355 mm

Upstream Tracker (UT) MWPC for outer regions
. Side View e
= MAPS CMOS pixel P e =

S Polyimide 70m
=CAL | Pitch 140 ym 50m
. . . . u DLC layer (<0.1 um)
n Radiation tolerant Magnet Stations gu“ IOR( o r,mumﬁ%
. Pre-prog ). l
[T PCBM‘/

RICHI

.... D scintillator G mirror
- absorber @ light guide

I=_L=

RICH1, RICH2

» Reduced pixel size

=  Add timing information
= SiPM, MCP

front back
—» Beam direction

ECAL
= Space & time, longitudinal segmentation

= SPACAL with radiation hard crystals
v

07/22/2022




- ALICE Upagrade C

In few words:

ECAL

Compact all-silicon tracker

with high-resolution vertex detector
Superconducting magnet system

Particle Identification over large acceptance:
muons, electrons, hadrons, photons

Fast read-out and online processing

Absorber
Magnet

Muon chambers RICH

FCT

07/22/2022

0‘36\

5 Mg For LHC Run 5 & 6
3 \ ALICE 2 Improvement of
5 g SIES pointing resolution \ /
,'cf: 10 ©'Rune and effective TOF
§ statistics Tracker
3 @ Vertex detector
> retracted
g ALICE 3
ITS3 » Toinstall at 2033-34
oe,\\oaoe‘e to install at LS3. « R&D focuses on silicon technology

* Vertex detector retractable, and in
the 2"d vacuum

« 3 (+1+1) other talks on preparation,
performance and lumin measurements



) FCC-ee and CEPC

O One from each of Fcc-ee and CEPC on detector
requirements, and IDEA detector concept.

O Not need to go to details here.

CEPC 4th

07/22/2022

FCC-ee New
Noble Liquid Ecal based

Mocn Tagger

HG ECAL: Pb+Lar, or W+LKr
Drift chamber (or Si) tracker
CALICE-like HCAL

Coil in same cryostat as LAr



Drift Chamber

O Three talks on the drift chamber: PID for CEPC 4t
and IDEA, R&D activities, and IDEA tracking

performance.
signal i downstream[@ 4L ¥ I / HV distr.
box ! tngger tile b box
(4 ~— \N
( X
> v f
: \
The IDEA tracking s_\’stemJ pery N\ ’ T
manifold inlet gas
s *q y manifold
Solenoid = | |
D%‘ =
ignal cable t‘:ipgsgt;ﬁilre
™ (40 cm)
_IDCH
150 mead lcm
& - is do l‘l' beam N 1 5cm
Vertex

inner: 2 single Si pixel (20 yum x 20 um) layers of 0.3% X,

’ ot 1.5cm
outer;'2 single Si pixel (50 um x 50 um) layers of 0.5% X,

forward: 4 single Si pixel (50 um x 50 um) layers of 0.3% X, 1
C
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Pixel TPC for Z-Pole Running at CEPC and FCC-ee

FCC-ee / CEPC @ Z pole running:

s & &

M O - , ‘ ‘} - At ILC beam-beam effects are dominant: primary ion

=S 5 A
density 1-5 ions/cm® > track distortions <5 um - primary ionization of the gas;

; & | . ; ' - ions from the gas amplification stage;
- et s - ifi i 3 i i ’
Gas amplification 103 - ILC without gating leads to _ power consumption (no power pulsing

track distortions of 60 um - gating device is needed possible:

D. Arai, K. Fujii . - operation at 2 T during the Z-peak running;
J. Kaminski [ _—t

————

|

i
ni)

lon backflow (IBF) can give a lot of additional charge
- so IBF must be controlled (IBF =5/1.5 2> 80/ 14 um)
Measuring IBF for Gridpix is a priority, expected 0(1%o)

Az) gy =855 mm

Track distortions @ CePC / FCC-ee:

Assumes, for each prima
5 ions backflow (IBF =5)
from readout into main gas system

v' HZ-pole running - yy-background is very small = pad/
pixels are OK — ion bkg. comparable to ILC @ 250 GeV

Deviation in ¢ Direction (um)

—— k=5L=17 Vjo, =5 (CEPC nominal)

Z-pole running (@1038)-> primary ion density 1000 == e
ions/cm?® = serious tracks distrotions O(mm); space rift length (mm)
charge effects could be calibrated (e.g. ALICE) ???

Future R&D needed:

Study pixel - TPC to replace pad - TPC for Z-pole - Optimal pad size to improve track resolution;
running @ CEPC - Pixel size > 200 um or large = cost reduction

Very healthy collaboration
07/22/2022
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0.4 C . resistivity: 32 MQ/o 10%10em?
L@ 3em- spot 7.07¢m? Detector active area
L - 2 i
[ |- @4dcm - spot 12.6cm” 300kHz/em® w/m.Lp.
0.2 == Z 5cm - spot 19.6cm” |+ 5.9 keV X-ray
L | ALL - spot 100cm? measuremen t
oliiiii i i i i il
10 10° 10°
X,ay Flux [Hz/em?]

Top Copper (5 pm)

Polyimide

DLC layer (<0.1 pm)
p~10+100 MQ/C]

Pre-preg /L

R&D and Implementation of u-RWELL

Cathode PCB

Pitch 140 pym

70 ym

50 um

PCB electrod/

Rate Capability SRL - Spot Effect
Gain = 4000, ArC0,-CF, 45:15:40

Developed in collaboration with CERN-EP-DT-
MPT workshop

The features can be summarized:

* Spark suppression: presence of a resistive
layer (Diamond-like Carbon) to quench
sparks amplitude (like MM)

 Compactness: amplification stage
(geometry like WELL and GEM) embedded
in the PCB readout = multi-layer PCB std.
industrial technology > mass production

But the resistive layer introduces a local gain

drop as the rate increases

For the LHCb upgrade 2 muon system,
the IDEA preshower and muon, several
other experiments that did not present.
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Resistive MicroMeGas Detectors

Drift Electrode
-800V
\.

A
¢ ArCO,=937 Conversion / Drift Gap

: e-:'p E drift = 60 V/mm
5mm
n

Micromesh \'
L LT P T T LT T EEP PP EY ., TP RPPRRPERE PP -500V
A + A

setfesat e -~

100 pm Amplification Gap .‘i: .

Eamp =5 kV/mm
Kapton foils <

DLC Top Layer
“ DLC Bottom Layer

Readout copper strips or pads

* Resistive MicroMeGas: cover readout copper strip/pad
with a resistive insulator to suppress discharges

* Drift region of *5 mm width (E~60 V/mm) & amplification
region of ~100 um (E~5 kV/mm) separated by a metallic
micro-mesh, supported by 0.8 mm diameter pillars

 Geometrical & electrical configuration to guarantee a fast
ion evacuation — fundamental for high rate applications

 Demonstrated to be a solid detector technology for HEP.

07/22/2022

20x20 cm? prototype

i o

D
4 -~
S - —_—

Two talks from the same group

R/
0.0

)

Small-pad resistive MMG prototypes
were tested in high-rate environment (X-
ray, Fe55 source, /1 beam)

Irradiation and longevity test of Resistive
Micromegas detector did not show sign
of aging using both Ar:CO2 93:7 and
Ar:CO2:iC4H10 93:5:2
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Mu2e ECAL (Csl + SiPM) CEPCECAL w | N ‘
QC ready, detector assembling started Diagonal Crystal bars + SIPM v |
Combine excellent energy resolution \
with superior imaging capabilities \
through fine 3D segmentation

Proton Beam
e
-t @

Detector Solenoid =
//
—
= //-
Calorimeter ‘ Crystal Scintillator (eg. BGO, LYSO..)
Muon Tracker v

Stopping Target ] 1x1x40cm’ @

} 1

: ~20m L \Photodefectors (eg. FPMT, SiPM...)/'

L
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Calorimters (1)

LHCb ECAL Upgrade
GAGG /PS + W/ Pb, PMT

Emphasize on timing

——— scintillator T mirror

o absorber @ light guide

front back
—» Beam direction

Time resolution above 5 GeV
v SPACAL W+GAGG
v" SPACAL W+Polystyrene
v" SPACAL Pb+Polystyrene
v SHASHLIK

<20 ps
<20 ps
<25 ps
<40 ps

SH Li=HF - £
1: 2 Crytur 5 b 2 <Crytur

BBkl
1]

| Ry
PSR T I L LA
innug X

18 i .
d GAGG 5 GFAG
. L}

1 1
1 Fomos
: GAGG :

(1.5x1.5 cm? cell size)
(2x2 cm? cell size)
(3x3 cm? cell size)
(4x4 / 6x6/ 12x12 cm?

Energy resolution of order 6(E) / E = 10% / VE @ 1% can be react
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C/E
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IDEA DR Calorimeter
(Cu, Sc/C fiber, SIPM/PMT)
Beam test of a prototype (EM) detecter

at DESY and CE

| QR e

- «EGeVy, et
L« E GeV protons
- *+E GeV pions

T
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CALICE Calorimter Studies

CALICE Sc-ECAL

A 32-layer prototype is under construction in China.
Option for CEPC and ILC electromagnetic calorimeters.

45x5x2mm? scintillator strips
2.45x1.9x0.85 mm® SiPM

Strips could be read at both ends of longer strips
to increase accuracy and provide redundancy.

ICHEP 2022 S S
BOLOGNA Irles A, 8 July. 2022

eTechnological prototype: full layer
« Joint R&D with CEPC-ECAL group
strip (45 X 5 X 2 mm®) with SiPM

By Adrian Irles

210ch /EBU

| Semi Digital-HCAL

2 m? RPC assembled Scalable gas distribution

CALICE SiW-ECAL

» new technological prototype with tungsten absorber
® Sjpads:5x5mm? (ILD design)

* 15 modules layers x 1024 channels/layer = 15000 cells ( ~as LHC-exp)
* TBat DESY and CERN 2022 (with AHCAL)

p All components designed to fit the requirements of a Lepton
Collider Detector
* Ultra compact digital readout systems

* Same granularity as ILD

P 48 layers x 28 mm, also made of glass RPC.
® 96 x 96 channels per layer, i.e.
|

e ~440000 1x1 cm? readout channels. i

» Semi digital readout
® 3tunable energy thresholds —

® thresholds coded into 2 bits + pads with few, many or lots of hits.

» Optimize hadronic shower reconstruction via choice of
thresholds.
P Better linearity response, improved energy resolution.

> Very dense PCBs aka FEV with 1024 readout channels (with digital, analogue, clock signals) ini

FEV10-12

components needed (#
the integrity of the si¢
proper power mana

CAufed |

|appooonopos
nnanng!
oD Apnone

4 bl

- ICHEP 2022
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= CAl CALICE Analogue HCAL [
38 layers
Highly compact obj 4 72x72x2.5 cm?®/ layer
minimal space for th¢ 22,000 tiles

SiPM under the tiles
for better uniformity
and light collection

3x3cm?tiles

each cell also provides
time information with
~1ns resolution s

a true 5D “pixel”  ;
detector: x,y,z,E,t " I

Zoos

Intenssve beam test campaigns in the last years, - @
»__includina combined with CMS-HGCAL and SiW-ECAL (.ALIIEG9 TRt AN

CALICE Imaging Calorimeters:
A Review and New Results

A DS TTTT TTTT TTTT ‘ TTTT | TTTT | TTTT ‘ TTTT ‘ TTTT TT
e - i
ut [ CALICE SDHCAL i
m v r H6 runs b
B 025 -
8 L i
© = ®  Multi-thr. mode B
0.2 4 Binary mode ]
L * J
o ; 015 é —
© 5 ' - ] i
£ A r

5ot r L 4 T ]
o C LA ]
w - 01— LA S L
; HeAL L ) . i
L e ]
0.05 - ]
7I 111 | L1111 ‘ ] ‘ 111 | L1l | 1111 ‘ | ‘ 1111 ‘ 1 T

0 6
Epeam [GEV]

Hadronic energy reconstruction
in highly granular calorimeters

Also “Advanced reconstruction
and simulation techniques for
highly granular calorimeters”
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Other New ldeas On Calorimters

CEPC ScintGlass HCAL Crilin Prototype
* Crystal calorimeter with longitudinal information, for

. ; . muon collider barrel.
l:l Top trigger SiPM-on-Tile
* Lead Fluoride (PbF2) crystals readout by 2 series of

Glass sample (4.5x4.5x3.5 mm®) two UV-extended 15um pixel SiPMs each.
6x6mm? SiPM (air-coupling) _ _ ) o
A E_. PCB » Longitudinal segmentation and excellent timing
r resolution
Bottom trigger Tile .. . .
J‘L « Timing information can be used to suppress beam
o induced background.
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Silicon Pixel Detectors

TimeSpot:
O Picosecond timing resolution with 3D trench Si sensor.
O 55x55 um? pixel, potentially can be reduced to 28x28 pum?2
0 Rad-hard as a candidate for LHCb upgrade 2 VELO.

.
\\ =

150 pm

A

55 pm

w
o

Iradiated Pixel (2.5x10"° 1MeV n_ /om?) Not Irradiated Pixel

W~ trench
Wy trench
[ |p substrate

& Spline method ~&-— Spline method

[~ -l Reference method - Reference method

time resolution O [ps]
n
ol

20

Collecting electrode !
™) u

15

10

I\lll\\{l\lll\l\I‘\III\III\I

360 -140 —120 —100 -80 -60 -40 -20 0

substrate

g !
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Silicon wedge
and readout

4

Support and cooling

ot s
{ 53:” ii"’:}“ig ;" & ‘3"‘“"«/’-'4! g
s et 7 GiSS B

4‘.:’5"&"3 'k\\\,

Forward silicon tracker for EIC
total ~2.2m?, look into different technologies

LGAD pixel map
3X5 Matrix

2 s B m

LGAD Carrier Board  AC-LGAD Carrier Board AC-LGAD
pixel map

4X4 Matrix

MALTA Carrier Board MALTA sensor diagram
MALTA Pixel diagram 512X512 Matrix

36.4 ym




/7
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Performance

Availability

Features

10 um/20 pm MCPs
Glass/Ceramic body

New internal support design —
373 cm? (97% active area)

Gen-ll — flexible pickup pattern
modification

ELECTRODE

EMISSIVE
LAYER

GLASS
SUBSTRATE

RESISTIVE
LAYER

High QE blue-sensitive photocathode ________
(>30%) A
~1E7 Gain

Low Dark Rates

~50 ps SPE, ~10 ps MPE

O(mm) position resolution depending &
on readout board

Gen | Direct readout & Gen |l
Capacitively Coupled readout

High Rate Picosecond Photodetector
(HRPPD 10 cm) in development

LAPPD 126
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Applied on a RICH detector

- 24,

c
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s " % 2 4 6 8 10 12 14 16 18 20 22 24

S . . . .
& Single event with two beam particles; [mV] units
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Photon Detection

TORCH for low P PID

Time projection (for 1 MCP column)

tmcusurcd [HS]

111cm

#. = 0.45rad

A A

A S S NSNANNN N

#. = 0.85rad

yL L e,
* 1cm \

UIlT£4LrZucsc

N

Optical Modules for IceCube-Gen2

-2.85s——5 —i5 =" Total 9,600 optical modules (80/String)
“Gen?2 also plans surface & in-ice radio arrays (J. Phys. G 48 2021) xlkm]
f Low-energy extension & Ice calibration p ¢ High energy extension
g ) Deployment scheduled in 2025/26 season ¥ Design report in preparation

IcECUBE

IceCube DOM
10" PMT & dia. 33 cm

- .
. = - e - ”
1.5 G ALK telng Moo
SEL SR e Pl , " Vertically &
1. LAY IR L St i b S8 =y horizontally dense
2 Pl €8 Loig PR = array with 7 Strings
. .
0.5 & Vi e . % . » Total 700 optical
- 8 _=uZes B modules
o et »86 Strings with 125m
—0.5] & .' .’ .' spacing
W e 2 > Total 5,160 optical
_— o, Feie '_ o modules (60/String)
.9 » .
-1.5] e, L

*120 Strings with 240m spacing

IcECUBE |CFCUBE

540 mm

24x 3" PMTs & dia. 36 cm  2x 8" HQE PMTs & dia. 30 ¢

— 44—

«—312mm—— «—318 mm——
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NEXO — search for Ovp with
a 5-ton liquid xenon TPC

Charge detection: anode plane
of modular charge tiles (10 cm
long and 6 mm pitch), readout

with ASIC in LXe.

Neutrino and DM

Charge sensing tile and in-LXe cold electronics

Light detection: 4.5 m? of VUV

SiPMs with ASIC readout in LXe.

Electron lifetime: 10 ms
Electric field: 400 V/cm

=118.3cm

Drift length

0.6
Additional avalanches

VUV silicon photomultipliers (S

07/22/2022

within 1

iPMs)

ICHFEP 2N22 Iulv 2022

Charge Tiles
Charge Tiles Supp

SiPMs

SiPM Staves
Field Shaping Ring
Support Rods

and Spacers

Cathode

Scintillators
e Veto - rejects muon background
e Trigger/timing - arrival time
e Preshower - veto & 2-Y signal

Geometry
e 7mlength

. 20cm aperture

. 1.5m decay volume

e Emulsion detector for v's
e ~750 layers of emulsion films
e Tungsten plates
Magnets
e 0.57T Dipole
e Charge separation ||

Calorimeter
e Donated by LHCb
e Measures total energy

of Y, et Physics Signal
e  Dark photons (LLP) and neutrinos
from meson decay

pp—LLP + X, LLP—ete- u+u-...

Other proposed detectors for FPF

Experiment Science Priority Technology
Faser 2 Long-live neutral particles decay Large decay volume (super-conducting) magnetic spectrometer
FASERnu2 Neutrino Interactions Tungsten/Emulsion 20 tons. Veta and interface tracker for muons
AdvSND Neutrino Interactions on/off axis Hybrid electronic and tungsten/emulsion detector with had. cal.

FORMOSA Milicharged particles Scintillation bars with photomultiplier readout.

FLArE DM scattering and neutrino interactions Liquid Argon TPC 10-20 tons

Top View

By Easen 2 Me 0000 osewasee sonuoen BAE  qp
— ; L — &

Y s s — B
- Iamemitmls_ _

e e Mememe o EM Beam
Plan view - Cavern
B 1:100

1

1

1
»»

-
1 /_Ev
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O Globally distr. system of computing centers

O WLCG: TierO + 14 Tier1’s + >150 Tier2’s in
>40 countries

07/22/2022

Robust resource growth of pledged resources:
O Average +20% CPU and disk yearly growth

O Consistent with a ‘flat budget’ funding for computing centers
— A de-facto adopted model across all Funding Agencies for
the past 10 years

O CPU: > 1 million cores fully occupied today, Data ingestion
tens of EB/year

D 1e9 CPU Delivered: HSO6 hours per month
5 Bem ALICE
o] Bl ATLAS
< B CMSs
8 8 BN LHCD
2]
=
n 61
—
=)
]
%
O
®)
I
© 2]
=
E g o
NS O
o)
S
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CHF/HS06

Price/performance evolution of installed CPU servers (CERN)

™~

100.00

10.00

1.00

0.10

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

“\\

|

A $SD  2GB->3GB/core memo ry

i

rage improvement factor

12
1108 105 1.14 1.07 i /AMUm.ukct push
0.77 COVID19 side effects
162°) o0 ="
oS X

f T T 1 )
1201 e increase i

|l rovei

2028 diff = factor 1.7

HOC
INTEL - AMD price war, low RAM prices
“\\ 133 / / / P ;

=123

CHF/GB Price/performance evolution of installed disk server storage (CERN)
10,000
reference Is usable disk space, cost figures include mirrored space (= one extra copy of the data)

- . CERN disk server

) Architecture change
\ 1.10

0.100

0.010

0.001

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

r average improvement factor

Cost Projection
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123

Annual CPU Consumption [MHS06years]

Disk Storage [EB]

Run 3 G1=56 Run 4 (1=88-140 Run 5 (4=165

L A A L e e o e
50~ ATLAS Preliminary 7
I 2022 Computing Model - CPU
401~ « Conservative R&D
[ v Aggressive R&D
|- — Sustained budget model X

30— (+10% +20% capacity/year) -
20} M
10F
I P IS (PRI I I I MR IR
02020 2022 2024 2026 2028 2030 2032 2034 2036
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Similar for other LHC experiments

LHCb has a sharp increase due to
trigger less readout for Run3

: How can these challenges be overcome?

Fully exploit the features offered by
modern HW architectures

Towards a more flexible and

sustainable infrastructure

Synergies and collaborations across
scientific  disciplines and  with
Industry partners

Getting performant software and
computing infrastructure requires
significant investment in
programming and computing skills
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HEP Software — Plenary Talk by Heather Gray

« Characteristics of HEP experiments
over the next decade

2 Increasingly sophisticated detectors,
Increased event data volume

Higher data rates
Increasing demands in physics precision
Need to explore unconventional signatures

« Challenges/Opportunities

o Technology evolution: Increased
concurrency, Increasingly diverse
architectures

)

Machine learning

Data science, including python for
scientific computing

Open Source Software
Funding constraints
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HEP event rates and sizes
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Conclusion by Heather

* Software plays a key role in essentially every component of modern HEP
experiments

* Within HEP, software been going through a period of rapid evolution
due to more demanding experimental requirements and changing
hardware environment

* Key features include
« Optimization and modernization
* Movement towards common software
* Increasing diversity of hardware architectures
* Impact of machine learning

* This rapid development will need to continue in preparation for future
upgrades such as the HL-LHC

* For further details, | encourage you to consult the excellent talks from the
parallel sessions
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