

Accelerator highlights from ICHEP 2022

https://www.ichep2022.it/

J. Gao

July 22, CEPC Day

Accelerators: Physics, Performance and R&D for future facilities

This session addresses technologies and performances of both existing and next generation accelerators (including HL-LHC) and their potential and impact on the present and future particle physics research.

Conveners:

Benedetto Giacobbe (INFN BO, LOC liaison) Frank Zimmermann (CERN) Angeles Faus-Golfe (IJCLab) Vladimir Shiltsev (FNAL) Jie Gao (IHEP, Chinese Academy of Sciences) Gaku Mitsuka (KEK)

https://agenda.infn.it/event/

ICHEP 2022 International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Accelerators: Physics, Performance, and R&D for future facilities - Room 12 (Celeste) (09:00 - 10:45)

-Conveners: Angeles Faus-Golfe time title	presenter
09:00 Crystal-based positron source for the lepton colliders	CHAIKOVSKA, Iryna
09:15 Considerations for Fermilab Multi-MW Proton Facility in the DUNE/LBNF era	NAGAITSEV, Sergei
09:30 Beam Dynamics Effects in the Muon g-2 Experiment	DRIUTTI, Anna
09:45 Tracking the magnetic field in the Fermilab Muon g-2 experiment	REIMANN, René
10:00 The Advanced Beam-Cooling Program at Fermilab: First Experimental Demonstration of Optical Stochastic Cooling	NAGAITSEV, Sergei
10:15 Pion-Production Target for Mu2e-II: Simulation Design and Prototype	PRONSKIKH, Vitaly
10:30 Crystal-based extraction of the electron beam circulating in the DESY II Booster Synchrotron	MAZZOLARI, Andrea

ICHEP 2022 International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Accelerators: Physics, Performance, and R&D for future facilities - Room 12 (Celeste) (11:15 - 13:00)

-Conveners: Jie Gao presenter time_tile presenter 11:15 The CLIC and ILC accelerator status and plans FAUS-GOLFE, Angeles 11:35 Report of electron beam acceleration with STF-2 cryomodules for the ILC KURATA, Masakazu 11:50 Study status of the CEPC Machine-Detector Interface and Interaction Region SHI, Haoyu 12:05 FCC-ee Energy Calibration and Polarization KEINTZEL, Jacqueline 12:20 FCC-ee Booster Design DALENA, Barbara 12:35 FCC-ee Collective Effects and their mitigation CARIDEO, Emanuela

ICHEP 2022 International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Accelerators: Physics, Performance, and R&D for future facilities - Room 12 (Celeste) (14:30 - 16:30)

-Conveners: Gaku Mitsuka	
ume tue	presenter
14:30 The FCC-ee Preinjector and the PSI Positron Production at SwissFEL	CRAIEVICH, Paolo
14:45 Overview of the LHeC and FCC-he accelerator concepts	HOLZER, Bernhard
15:05 PERLE: The development of a multi-turn, high current ERL	KAABI, Walid
15:20 The Electron-Ion Collider: an overview	VERDÚ-ANDRÉS, Silvia
15:40 Status and challenges of the Future Circular Hadron Collider FCC-hh	GIOVANNOZZI, Massimo
16:00 Progress towards the CERN Gamma Factory	MARTENS, Aurelien

6 13 07 2022

Accelerators: Physics, Performance, and R&D for future facilities - Room 12 (Celeste) (17:00 - 19:00)

-Conveners: Vladimir Shiltsev

time title

presenter

17:00 Plans for future energy frontier accelerators to drive particle physics discovery	PASTRONE, Nadia
17:20 Machine-detector interface studies for a multi-TeV muon collider	CALZOLARI, Daniele
17:35 High Field Magnet Development for HEP in Europe – A Roadmap by the LDG HFM Expert Panel	AUCHMANN, Bernhard
17:50 High-resolution, low-latency, bunch-by-bunch feedback systems for nano-beam production and stabilization	BURROWS, Philip
18:05 A new method with minimized systematic error sources to detect axion dark matter in storage rings using an rf Wien filter	KIM, On
18:20 Storage ring proton EDM comprehensive systematic errors study for \$10^{-29}\$ e-cm level.	SEMERTZIDIS, Yannis
18:35 Channeling at accelerators high-energy frontier and future developments from GALORE	ROMAGNONI, Marco

6 13 07 2022

Accelerators: Physics, Performance, and R&D for future facilities - Room 5 (Avorio) (09:00 - 10:45)

-Conveners: FRANK ZIMMERMANN

time title	presenter		
09:00 "Snowmass'21 Accelerator Frontier: Summary of Discussions on Future HEP Facilities in the US	SHILTSEV, Vladimir		
09:20 HL-LHC status and operational scenarios	DE MARIA, Riccardo		
09:40 FCC-ee Collider Design Overview	HOFER, Michael		
10:00 Current Status of the ILC and CLIC projects	BURROWS, Philip		
10:20 The muon collider progress	SCHULTE, Daniel		

Highlights mainly on the following subjects:

ILC, CLIC, FCCee,hh, EIC, PIPI,II, Muon collider, ERL and key technologies...

International Linear Collider ILC

- Superconducting Cavities, 1.3GHz, 31.5 (35) MV/m
- Klystrons
- 250GeV CME, upgradeable to 500, 1000GeV
- $L = 1.35 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (at initial 250GeV)
- 20km length, in Tohoku / Japan
- Polarisation 80%(e-), 30%(e+)

Compact Linear Collider CLIC

- NC Copper Cavities, 12.0GHz, 72 100 MV/m
- Two-beam acceleration (Klystrons)
- 380GeV CME, upgradeable to 1500, 3000GeV
- $L = 1.50 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (at initial 380GeV)
- 11.4km long, at CERN / France & Switzerland
- Polarisation 80% (e-)

ICHEP 2022

ILC Technology level

Since the publication of the conceptual design report (RDR) in 2007 and the Technical Design Report (TDR) in 2013, the technical development has been progressing steadily toward the start of construction.

Status	(RDR) (TD	R)	2021 (EDR) *
SRF cavity, CM	\sim 2017 Technology development ->Model wor	2018~202 k-> Prototype High performance	21 International mass production, and transfer demonstration
SRF Linac	Model work: small-scale models, partial/compo models.	European X	FEL user operation
e- source	~ Tech. Design->Tech. Deve	2017 opment->Tech. Demonstration	Tech. confirmation
e+ SOUICE Undulator scheme	~2017 Tech. Design->Tech. Development	2018~2021 Tech. Demonstration	Target and magnetic focusing
e+ SOUICE e-driven scheme	\sim 2017 Tech. Design->Tech. Developmen	2018~2021 Tech. Demonstration	Target and capture cavity
DR	Design->Tech. Development-> Te	\sim 2017 ech. demonstration achieved at KEK A	TF Kicker
Final focus	Design->Tech. Development->Te	\sim 2017 ch. demonstration achieved at KEK AT	F Stable op.
Dump	~2017 Tech. Design->Tech. Developm	2018~2021 Facility design	Remote handling
	: ~2017 : 2018~2021 : Pre-lab	A. Faus's talk	*EDR:Detailed Engineering Design Report required to start construction. 10

ILC Site Selection and Civil Engineering

Kitakami mountains

1 ILC Location

青森県

宮城県

Sendai

Morioka

ILC accelerator area : inside the granite rock bodies → inside black curves (left) → in the pink color (right) → possible up to 50 km

Access Hall

On-going jobs : Optimal accelerator placement, considering surface environment, land-use and land-acquisition

2 Geological Surveys

- Electric Prospecting (crack)
- Seismic Exploration (stiffness)
- Boring Survey
- Borehole Camera
- Measurement of Initial Stress
 of the Ground

- ightarrow no issues from previous surveys
- → requiring : additional surveys around access tunnel head and access tunnel inside for detailed designing

"Green ILC" and Carbon neutrality

320ktonCO2/vear

Green-ILC AAA-2014 Report

Although SRF has been adopted, the AC power consumption for ML part is <50%, what is a total of 110 MW

- "Green ILC": Past efforts include increasing the efficiency of accelerators (SC, klystron) https://green-ilc.in2p3.fr/documents/
- Carbon neutrality: Common challenge for all future HEP accelerators. The use of SC will contribute to carbon neutrality in the future.

Work is ongoing to study these issues in collaboration the "ILC Environmental Assessment Advisory Board"

Summary of the Discussion

https://www2.kek.jp/ilc/ja/contents/docs/Strateg ic Environmental Assessment of the ILC Pr oject Summary of the Discussion r.pdf

ILC Energy center (artistic) view

Green ILC Studies in Tohoku Area

Studies conducted on

- Exhaust heat recovery from the ILC and the creation of business derived from it
- Connecting the ILC with the local forestry industry
- Utilization of solar heat The "Green ILC" concept and community development and planning - building an energy recycling society based on the Global Village

- International Development Team (IDT) prepares Pre-Lab
- 4 year Pre-Lab (hosted by KEK, Japan) phase for R&D, Engineering Design Report, Construction preparation
- > **ILC Laboratory** (international): 10 year construction phase

	IDT	IL	ILC Pre-Lab			ILC Lab.										
	PP	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.																
Construction																
Civil Eng.	Fo1	lowi	ng a	fo	ur-y	ear	ILC	Pre	-Lab	pha	ase,	ILC				
Building, Utilities	cons	stru	ctic	n w	i11	cont	inue	e fo	r ab	out	9 y	ears	+]	-		
Acc. Systems	com	nisi	onin	ıg												
Installation																
Commissioning																
Physics Exp.																

ILC upgrade options Energy

Philip Burrows's talk

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	UI	grade	
Centre of mass energy	\sqrt{s}	GeV	250	250	91.2	500	250	1000
Luminosity	$\mathcal{L} = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^{-}/e^{+}	$P_{-}(P_{+})$	%	80(30)	80(30)	00(00)	80(80)	80(30)	00(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	I_{pulse}	$\mathbf{m}\mathbf{A}$	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{ m pulse}$	μs	727	961	727/961	727/961	961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu { m m}$	5	5	5	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35	35	35	30
RMS hor. beam size at IP	σ^*_{x}	$\mathbf{n}\mathbf{m}$	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	$\mathbf{n}\mathbf{m}$	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99 %	58.3%	73%	44.5%
Beamstrahlung energy loss	$\delta_{ m BS}$		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	P_{site}	MW	111	138	94/115	172/915	198	300
Site length	$L_{ m site}$	\mathbf{km}	20.5	20.5	20.5	31	31	40

Table 4.1: Summary table of the ILC accelerator parameters in the initial 250 GeV staged configuration and possible upgrades. A 500 GeV machine could also be operated at 250 GeV with 10 Hz repetition rate, bringing the maximum luminosity to $5.4 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ [26]. *): For operation at the Z-pole additional beam power of 1.94/3.88 MW is necessary for positron production.

CLIC parameters and beam accelerator sequence

Lab

Laboratoire de Physiqu

IN2P3

deux infinis

- Drive beam accelerated to ~2 GeV using conventional klystrons
- 2. **Intensity increased** using a series of delay loops and combiner rings
- 3. Drive beam decelerated and produces high-RF
- 4. Feed high-RF to the less intense main beam using waveguides

Parameter	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	GeV	380	1500	3000
Repetition frequency	Hz	50	50	50
Nb. of bunches per train		352	312	312
Bunch separation	ns	0.5	0.5	0.5
Pulse length	ns	244	244	244
Accelerating gradient	MV/m	72	72/100	72/100
Total luminosity	$1{ imes}10^{34}{ m cm}^{-2}{ m s}^{-1}$	2.3	3.7	5.9
Lum. above 99% of \sqrt{s}	$1 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.3	1.4	2
Total int. lum. per year	$\rm fb^{-1}$	276	444	708
Main linac tunnel length	km	11.4	29.0	50.1
Nb. of particles per bunch	1×10^{9}	5.2	3.7	3.7
Bunch length	μm	70	44	44
IP beam size	nm	149/2.0	$\sim \! 60/1.5$	$\sim 40/1$
Final RMS energy spread	%	0.35	0.35	0.35
Crossing angle (at IP)	mrad	16.5	20	20

Examples of technical developments

CLIC Technical developments of key elements

ICHEP 2022

CLIC Site Selection and Civil Engineering

Important effort within:

- Civil engineering
- Electrical systems
- Transport, logistics and installation
- Safety, access and radiation protection systems
- Cooling and ventilation

Crucial for cost/power/schedule

- Klystron-powered version studied and costed for 1st stage (380 GeV c.m.)
- Upgrade to 1 TeV and beyond based in any case on Two-beam scheme (klystron-based sectors re-usable with modifications)

17

"Green CLIC" and Carbon neutrality

Collision energy [GeV]	Running [MW]	Standby [MW]	Off [MW]
380	110	25	9
1500	364	38	13
3000	589	46	17

Very **large reductions** since **CDR**, better estimates of nominal settings, much more optimised drive-beam complex and more efficient klystrons, injectors more optimisation, etc Further savings possible, main target damping ring RF and improved Lband klystrons for drive-beam

Energy studies:

Running when energy is cheap

Relative energy cost by no scheduling, avoiding the winter months (restricted), daily, weekly and dynamic scheduling. Central values of the ranges shown should be considered best estimates. The absolute cost scale will depend on price, contracts and detailed assumption about running times, but the relative cost differences indicate that significant costreductions could be achieved by optimizing the running schedule of CLIC to avoid high-energy cost perign (F and fer)

Recovering energy

CLIC Timeline

Project Readiness Report as a step toward a TDR – for next ESPP

Assuming ESPP in 2026, Project Approval ~ 2028, Project (tunnel)construction can start in ~ 2030.

- Focusing on:
- The X-band technology readiness for the 380 GeV CLIC initial phase
- Optimizing the luminosity at 380 GeV
- **Improving the power efficiency** for both the initial phase and at high energies

- > More details:
 - X-band studies: Structure manufacturability and optimized conditioning, interfaces to all connecting systems for large scale production, designs for and support of use in applications from the 1 GeV linac at LNF to medical linacs
 - Luminosity: beam dynamics studies and related hardware optimisation for nanobeams from damping rings to final focus (mechanical and thermal stability, alignment, instrumentation, vacuum systems, stray field control, magnet stability, etc)
 - Improving damping ring and drive beam RF efficiency, study parameter changes to reduce power at multi-TeV energies maintaining high luminosities

Technology DrivenSchedule with apreparation phase of~5 years is neededbefore (estimatedresource need for thisphase is ~4% ofoverall project costs)

FUTURE CIRCULAR COLLIDER

The FCC integrated program

Comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at highest luminosities
- stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- complementary physics
- common civil engineering and technical infrastructures, reusing CERN's existing infrastructure
- FCC integrated program allows continuation of HEP after completion of the HL-LHC program

CIRCULAR FCC CDR and Study Documentation

- FCC-Conceptual Design Reports (completed in 2018):
 - Vol 1 Physics, Vol 2 FCC-ee, Vol 3 FCC-hh, Vol 4 HE-LHC
 - CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

EPJ C 79, 6 (2019) 474 , EPJ ST 228, 2 (2019) 261-623 , EPJ ST 228, 4 (2019) 755-1107 , EPJ ST 228, 5 (2019) 1109-1382

Summary documents provided to EPPSU SG

- FCC-integral, FCC-ee, FCC-hh, HE-LHC
- Accessible on <u>http://fcc-cdr.web.cern.ch/</u>

M. Giovannozzi's talk

FUTURE CIRCULAR COLLIDER

Feasibility study goals and roadmap

Highest priority goals:

Financial feasibility

M. Giovannozzi's talk

International Conference on High Energy Physics Bologna (Italy)

CHEP 2022

6 13 07 2022

FCC-ee Luminosity Goal

- Design of a highest-luminosity, energy frontier e⁺e⁻ collider, optimized to study Z, W, Higgs, and top particles
 - Aim for:

EP 2022

- 75 ab⁻¹/IP at Z-pole (91 GeV)
- 5 ab⁻¹/IP at WW-threshold (161 GeV)
- 2.5 ab⁻¹/IP at ZH (240 GeV)
- 0.8 ab⁻¹/IP at tt -threshold (365 GeV)
- Other operation mode (direct H production) under study
- Need to be compatible with design of the hadron collider (FCC-hh) see presentation by M. Giovannozzi, Thu 3:40 pm

M. Haufer's talk

FCC-ee main parameters

1	Layout	PA31-1.0				
		Z	WW	ZH	tî	
	Circumference (km)		91.174	117 km		
	Beam energy (GeV)	45.6	80	120	182.5	
	Bunch population (10^{11})	2.53	2.91	2.04	2.64	
	Bunches per beam	9600	880	248	36	
	RF frequency (MHz)		400		400/800	
	RF Voltage (GV)	0.12	1.0	2.08	4.0/7.25	
	Energy loss per turn (GeV)	0.0391	.37	1.869	10.0	
	Longitudinal damping time (turns)	1167	217	64.5	18.5	
	Momentum compaction factor 10^{-6}	28	5.5	5 7.33		
	Horizontal tune/IP	55.	563	100	.565	
	Vertical tune/IP	55.	600	98.595		
	Synchrotron tune	0.0370	0.0801	0.0328	0.0826	
	Horizontal emittance (nm)	0.71	2.17	0.64	1.49	
	Verical emittance (pm)	1.42	4.34	1.29	2.98	
	IP number	2	4	1		
	Nominal bunch length (mm) $(SR/BS)^*$	4.37/14.5	3.55/8.01	3.34/6.0	2.02/2.95	
	Nominal energy spread (%) $(SR/BS)^*$	0.039/0.130	0.069/0.154	0.103/0.185	0.157/0.229	
	Piwinski angle $(SR/BS)^*$	6.35/21.1	2.56/5.78	3.62/6.50	0.79/1.15	
	ξ_x/ξ_y	0.004/0.152	0.011/0.125	0.014/0.131	0.096/0.151	
1	Horizontal β^* (m)	0.15	0.2	0.3	1.0	
	Vertical β^* (mm)	0.8	1.0	1.0	1.6	
	Luminosity/IP $(10^{34}/\text{cm}^2\text{s})$	181	17.4	7.8	1.25	

*SR: syncrotron radiation, BS: beamstrahlung

24

ICHEP 2022 XLI International Conference on High Energy Physics

13 07 2022

Septum

njection beam from boo

Aperture

HEP 2022

DGNZ

Dynamic Aperture

Bologna (Italy)

- Dynamic aperture requirement given by top-up injection
 - Target for on-momentum injection is more than 15σ
- Target for momentum acceptance based on beam lifetime
 in the presence of large energy spread due to beamstrahlung
 - For t \bar{t} , requirement is $\delta_{acceptance} > 2.8\%$, while for Z, target $\delta_{acceptance} > 1.3\%$
- DA optimization done using 75(Z) / 146 (t\bar{t}) non-interleaved sextupole pairs in the arcs
 - Constraints from chromaticity and chromatic optics in the IP
- · Without errors, targets are met
 - Errors can significantly reduce DA optimization in the presence of errors in progress

6 13 07 2022

Collimation

- Stored beam energy in FCC-ee reaches 20.7 MJ, similar to heavy ion operation in LHC
 - A halo collimation system is being developed to protect equipment (e.g. SC final focus quadrupoles) from unavoidable loss

One straight section to host both betatron and momentum collimation

Injectors complex

FUTURE CIRCULAR COLLIDER

Injection energy into the booster 20 GeV (or lower?)

```
Ramping: 80-100 GeV / s (< 1 s )
```

Alternatives: SPS as Pre Booster Ring (PRB) and a Linac

27

90°/90° Optics for H and ttbar modes

Magnet	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	G	71
	Field at ttbar energy (182.5 GeV)	G	650
	Length	m	11.1
Quadrupole	Gradient at injection (20 GeV)	T/m	2.5
	Gradient at ttbar energy (182.5 GeV)	T/m	22.5
	Length	m	1.5
Sextupole	Gradient at injection (20 GeV)	T/m ²	174
	Gradient at ttbar energy (182.5 GeV)	T/m ²	1582
	Length	m	0.5

• FODO cells of ~52 m

• Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.4 m Distance between quadrupole and sextupole: 0.165 m Distance between dipole and sextupole: 0.504 m Distance between quadrupole and dipole: 0.869 m (it includes space for BPM and dipole correctors)

dipoles = 2×2944

quadrupoles = 2944

sextupoles = 2632/4

B. Dalena's talk

CIRCULAR COLLIDER

 \Rightarrow Very challenging **low** dipole field at injection (preliminary magnet design by **J. Bauche** @ FCC week 2022 <u>https://indico.cern.ch/event/1064327/contributions/4888487/</u>)</u>

60°/60° Optics for Z and W modes

Magnet	Parameter	Unit	Value
Dipole	Field at injection (20 GeV)	G	71
	Field at W energy (80 GeV)	G	284
	Length	m	11.1
Quadrupol e	Gradient at injection (20 GeV)	T/m	1.74
	Gradient at W energy (80 GeV)	T/m	6.9
	Length	m	1.5
Sextupole	Gradient at injection (20 GeV)	T/m ²	75
	Gradient at W energy (80 GeV)	T/m ²	300
	Length	m	0.5

• FODO cells of ~52 m

• Made of 4 dipole, 2 quadrupoles and 2 sextupoles

Distance between dipoles: 0.4 m Distance between quadrupole and sextupole: 0.165 m Distance between dipole and sextupole: 0.504 m Distance between quadrupole and dipole: 0.869 m (it includes space for BPM and dipole correctors)

dipoles = 2×2944

quadrupoles = 2944

sextupoles = 2632/6

B. Dalena's talk

 \Rightarrow Very challenging **low** dipole field at injection

FCC-ee Booster Design – ICHEP 2022

DA at injection (20 GeV) with multipole errors

Static dipole field errors of the CT dipole design at 56Gs considered + 10% random part

Dynamic field effect not taken into account in this simulations: dipole and multipole reproducibility expected to be $\leq 5 \times 10^{-4}$

MadX Thin-Lens Tracking (60 seeds)

DA: Stable initial amplitude @ 4500 turns (~15% tx 20 GeV)

91km 60°/60° optics

Courtesy of F. Zimmermann and Jie Gao

	CT d	ipole	Iron-core dipole		
GFR=R26	28Gs	28Gs 56Gs		56Gs	
B1/B0	-5. 20E-04	-1.04E-04	-1.56E-03	-2. 60E-04	
B2/B0	4.73E-04	5. 41E-04	-2.03E-03	-2.03E-04	
B3/B0	-7.03E-06	1.05E-04	3. 52E-04	1.76E-04	
B4/B0	-9.14E-04	-3.66E-04	4. 57E-04	-1.83E-04	
B5/B0	3.56E-05	-2. 38E-05	-2.38E-05	-3.56E-05	
B6/B0	6.18E-04	2.16E-04	-3. 09E-04	9. 27E-05	

relative values @ R = 26 mm

 $\beta_x = 83.2 \text{ m} \beta_y = 32.2 \text{ m} D_x = 0 \text{ m}$ Geometric emittance injected 1.27 nm

B. Dalena's talk

DA of 91km 90°/90° optics is ~ 5mm (due to longitudinal motion)

Equilibrium emittances

FUTURE CIRCULAR COLLIDER

• Booster rms emittance at extraction ≤ collider

				110.00
Beam Energy [GeV]	Eq. Emittance [nm rad] 60°/60°	Eq. Emittance [nm rad] 90°/90°	Eq. Emittance Collider [nm rad]	Eq. emittance Collider new [nm rad]
45.6 (Z)	0.235	0.078	0.24	0.71
80 (W)	0.729	0.242	0.84	2.16
120 (H)	4.229	0.545	0.63	0.64
175 (tt)	3.540	1.172	1.48	1.49

- \Rightarrow 90°/90° required for H and ttbar final emittances
- \Rightarrow 60°/60° retained for Z and W operation (mitigation of MI and IBS)
- \Rightarrow 90°/90° 100 m cell could gain a bit in momentum compaction at Z & W

B. Dalena's talk

FCC-ee Booster Design – ICHEP 2022

Ce2 RF insertions

- Currently, the cavities are inserted in the insertions H and L.
- The cell FODO length in the RF insertion is 104 m.
- 400 MHz cryomodule length: 11.4 m
- 800 MHz cryomodule length: 7.5 m

Insertion L

- υ Z mode: 2 CM left, 1 CM right of IPL
- $\upsilon~$ W mode: 7 CM left, 6 CM right of IPL
- $\upsilon~$ H mode: 17 CM left, 17 CM right of IPL
- $\upsilon~$ tt mode: 17 CM left, 17 CM right of IPL

B. Dalena's talk

CIRCULAR COLLIDER

 $\upsilon~$ tt mode: 60 CM left, 60 CM right

FCC-ee Booster Design – ICHEP 2022

Barbara Dalena

FCC-hh (pp) collider parameters

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	1	00	14	14
dipole field [T]		16	8.33	8.33
circumference [km]	97	7.75	26.7	26.7
beam current [A]	().5	1.1	0.58
bunch intensity [10 ¹¹]	1 1		2.2	1.15
bunch spacing [ns]	25 25		25	25
synchr. rad. power / ring [kW]	2400		7.3	3.6
SR power / length [W/m/ap.]	2	8.4	0.33	0.17
long. emit. damping time [h]	0	.54	12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	8	3.4	0.7	0.36

M. Giovannozzi's talk

CIRCULAR 16 T dipole design activities and options

M. Giovannozzi's talk

07.07.22 – ICHEP Conference, Bologna, Italy

High-Field Magnet Development for HEP in Europe – A Roadmap by the LDG HFM Expert Panel

LDG Expert Panel: <u>B. Auchmann (PSI/CERN)</u>, A. Ballarino (CERN), B. Baudouy (CEA Saclay), L. Bottura (CERN, *Technical Secretary*), P. Fazilleau (CEA Saclay), L. Garcia-Tabarés (CIEMAT, *Co-Chair*), M. Noe (KIT), S. Prestemon (LBNL), E. Rochepault (CEA Saclay), L. Rossi (INFN Milano), B. Shepherd (STFC), C. Senatore (Uni Geneva), P. Védrine (CEA Saclay, *Chair*) *HFM Project at CERN*: A. Siemko (CERN)

PSI MagDev Team: D. M. Araujo, A. Brem, M. Daly, M. Duda, C. Hug, J. Kosse, T. Michlmayr, H. G. Rodrigues, S. Sanfilippo

HFM R&D Goals

- Demonstrate Nb₃Sn magnet technology for large scale deployment, pushing it to its limits in terms of maximum field and production scale.
 - a. The effort to quantify and demonstrate Nb₃Sn ultimate field comprises the development of conductor and magnet technology towards the ultimate Nb₃Sn performance.
 - b. Develop Nb₃Sn magnet technology for collider-scale production, through robust design, industrial manufacturing and cost reduction.
- 2. Demonstrate the suitability of HTS for accelerator magnets, providing a proof-ofprinciple of HTS magnet technology beyond the reach of Nb₃Sn.

Performance

R&D Focus Areas and Cross-Cutting Activities

Fig. 2.9: Schematic representation of the structure of the proposed programme, consisting of three focus areas pursued with the support of cross-cutting activities.

- "The R&D programme must be holistic in nature: a compatible selection of electromagnetic, mechanical and thermal design approaches, conductors, materials, and manufacturing processes and methods needs to be integrated seamlessly with instrumentation and protection into a specific magnet solution responding to the required specification."
- Conversely, work across R&D areas must be closely coordinated.

HFM R&D Timeline – HTS Conductor and Magnet R&D

Fig. 2.13: Overview of proposed roadmap for high-field magnet development and associated technologies.

ICHEP 2022

International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Tentative Technical Timeline

FCC consistent machine layouts

FUTURE CIRCULAR COLLIDER

Optics solutions for full ring for both machines available

M. Giovannozzi's talk

FCC implementation - footprint baseline

Current baseline position based on:

- lowest risk for construction, fastest and cheapest construction
- feasible positions for large span caverns (most challenging structures)
- 90 100 km circumference

FUTURE CIRCULAR COLLIDER

• 12 surface sites with few ha area each

M. Giovannozzi's talk

The Electron-Ion Collider: an overview

Silvia Verdú-Andrés **Brookhaven National Laboratory**

Acknowledgements to the EIC team, and specially to Elke Aschenauer, Maria Chamizo-Llatas, Ferdinand Willeke, **Binping Xiao**

Electron-Ion Collider

Jefferson Lab

ENERGY Office of Science

Building Up the EIC's Case

Electron-Ion Collider

RHIC will transform into the EIC

EIC

100 meters

Possible Detec

AGS

sible Detecto Location

Electron Injector (RCS)

(Polarized) Ion Source

> Well maintained and operating at its nook /

Silvia Verdú-Andrés' talk

peak <					1
	Proton		Au		
	RHIC demonstrated	EIC design	RHIC demonstrated	EIC design	
Energy [GeV/nucleon]	255	275	100	110	
Particle per bunch [10 ¹⁰]	22.5	20	0.22	0.1	
RMS norm. emit., h/v [μm]	3.1/3.1	5.9/2.5	2.0/2.0	2.0/2.0	
BB parameter, h/v [10 ⁻³]	-18/-18	+15/+10	-4/-4	+11/+4	
RMS long. emit. $[10^{-3} \text{ eV} \cdot \text{ s}]$	55	110	0.27	0.2	
RMS bunch length [cm]	55	6	7.7	10	
RMS $\Delta p/p [10^{-4}]$	1.7	6.8	7.7	10	
Polarization [%]	55	70			
S	. Verdú-Andrés (BN	NL) ICHEP 2022	• Slide 45	Électron-la	on Collider

Key Updates of RHIC towards the EIC

prototyping, hadron polarimetry, vacuum systems, ESR injection kicker.

Crab Crossing

 Short bunch spacing (10 ns) for high lumi requires large crossing angle (25µrad) to reduce parasitic interactions and detector background. The ineffective overlap with crossing angle reduces lumi to less than 20% of luminosity with head-on collisions:

\Rightarrow Crab Cavities (CC) will reestablish head-on collisions to maximize lumi

- Electron crabs will operate at 394 MHz; two sets of hadron crabs to linearize kick: fundamental at 197 MHz; harmonic at 394 MHz.
- **High-gradient, compact** crab cavity needed: baseline uses Radio-Frequency (RF) Dipole.
- Very tight (~1 µrad) tolerance to RF noise and need to suppress fundamental mode driven transverse instability require feedback.

S. Verdú-Andrés (BNL) | ICHEP 2022 Collider Slide 47 | Electron-Ion

Collider

High Luminosity EIC Parameters

Table 3.3: EIC beam parameters for different center-of-mass energies \sqrt{s} , with strong hadron cooling. High divergence configuration.

Species	proton	electron	proton	electron	proton	electron	proton	electron	proton	electron
Energy [GeV]	275	18	275	10	100	10	100	5	41	5
CM energy [GeV]	14	0.7	10	4.9	63	3.2	44	1.7	28	8.6
Bunch intensity [10 ¹⁰]	<mark>19.1</mark>	6.2	6.9	17.2	6.9	17.2	4.8	17.2	2.6	13.3
No. of bunches	29	90	11	.60	11	60	11	.60	11	160
Beam current [A]	0.69	0.227	1	2.5	1	2.5	0.69	2.5	0.38	1.93
RMS norm. emit., h/v [µm]	5.2/0.47	845/71	3.3/0.3	391/26	3.2/0.29	391/26	2.7/0.25	196/18	1.9/0.45	196/34
RMS emittance, h/v [nm]	18/1.6	24/2.0	11.3/1.0	20/1.3	30/2.7	20/1.3	2 <mark>6/2.</mark> 3	20/1.8	44/10	20/3.5
β*, h/v [cm]]	80/7.1	59/5.7	80/7.2	45/5.6	63/5.7	96/12	61/5.5	78/7.1	90/7.1	196/21.0
IP RMS beam size, h/v [µm]	119	/11	95,	/8.5	138	/12	125	/11	198	3/27
K_x	11	l.1	11	l.1	11	.1	11	1.1	7	.3
RMS $\Delta \theta$, h/v [µrad]	150/150	202/187	119/119	211/152	220/220	145/105	206/206	160/160	220/380	101/129
BB parameter, $h/v [10^{-3}]$	3/3	93/100	12/12	72/100	12/12	72/100	14/14	100/100	15/9	53/42
RMS long. emittance $[10^{-3}, eV \cdot s]$	36		36		21		21		11	
RMS bunch length [cm]	6	0.9	6	0.7	7	0.7	7	0.7	7.5	0.7
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8
Max. space charge	0.007	neglig.	0.004	neglig.	0.026	neglig.	0.021	neglig.	0.05	neglig.
Piwinski angle [rad]	6.3	2.1	7.9	2.4	6.3	1.8	7.0	2.0	4.2	1.1
Long. IBS time [h]	2.0		2.9		2.5		3.1		3.8	
Transv. IBS time [h]	2.0		2		2.0/4.0		2.0/4.0		3.4/2.1	
Hourglass factor H	0.	91	0.	94	0.	90	0.	88	0.	93
Luminosity $[10^{33} \text{ cm}^{-2} \text{ s}^{-1}]$	1.	54	10	.00	4.	48	3.	68	0.	44

Source: EIC CDR

Silvia Verdú-Andrés' talk

The EIC's Project

PERFORMANCE AND SCOPE

- Full-energy, full-luminosity accelerator
- One interaction region with allowance for a second
- One detector

COST

• DOE Critical Decision 0 approved with a range of \$1.6B - \$2.6B

SCHEDULE

Silvia Verdú-Andrés' talk

• Completion in ~10-15 years

COLLABORATIVE STRATEGY

The EIC Project will be conducted "as a full intellectual partnership between the BNL and the JLab teams (and other collaborators) with major participation by all ". (T. Hallman, NSAC 3/2/20)

S. Verdú-Andrés (BNL) | ICHEP 2022 - | Slide 49 |

Electron-Ion Collider

EIC Project Timeline

9 DOE Critical Decision 0: Mission Need Approval 2019 EIC Site Selection: Brookhaven National Lab <u>2020</u> **BNL-TJNAF** Partnering Agreement Approval <u>2021</u> DOE Critical Decision 1: Preliminary Baseline Approval Silvia Verdú-Andrés' talk Mar. 2022 Decision on Project Detector: ECCE as reference **Clarify In-kind Deliverables and Agreements Jun 2023** <u>2024</u> DOE Critical Decision 2: Performance Baseline 2025 DOE Critical Decision 3: Construction Start 2032 DOE Critical Decision 4: Early Completion

10

6 13 07 2022

DUNE physics program

Bologna (Italy)

ICHEP 2022

International Conference on High Energy Physics

‡Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Considerations for Fermilab Multi-MW Proton Facility in the DUNE/LBNF era

ICHEP 2022 July 7, 2022

S. Nagaitsev's talk

S. Nagaitsev | Fermilab Multi-MW proton facility

7/7/2022

ICHEP 2022

International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Fermilab at present

S. Nagaitsev's talk

ICHEP 2022 XLI

International Conference on High Energy Physics Bologna (Italy)

Pozde

S

paceCharge19

6 13 07 2022

PIP-II Linac & Upgrades (1.2 MW power on target)

Project started in 2016 (CD0) First beam in Booster: 2028 (plan) MI 1.2 MW beam on target: 2032 (projection)

800 MeV H- linac

- Warm Front End
- SRF section

Linac-to-Booster transfer line

3-way beam split
Upgraded Booster

 20 Hz, 800 MeV injection

New injection area
Upgraded Recycler & Main
Injector

• RF in both rings Conventional facilities

Conventional facilities

- Site preparation
- Cryoplant Building
- Linac Complex
- Booster Connection

PIP-II Booster Power

	PIP	PIP-II
MI Beamline	NuMI	LBNF
RR/MI Intensity	$54 \cdot 10^{12}$ protons	$65 \cdot 10^{12}$ protons
RR/MI Rep. Time	1.333 s	1.2 s
MI Power	0.7 MW	1.2 MW
Booster Intensity	$4.5 \cdot 10^{12}$ protons	$6.5 \cdot 10^{12}$ protons
Booster Rep. Rate	15 Hz	20 Hz
Booster Ext. Power	85 kW	165 kW
Injection Energy	$0.4 \mathrm{GeV}$	0.8 GeV
Efficiency	95%	98%

The primary purpose of the PIP-II is to inject into the Booster, and in turn power the high-energy proton complex including DUNE/LBNF program.

4 S. Nagaitsev | Fermilab Multi-MW proton facility

ICHEP 2022 BOLOGNA

7/7/2022

‡ Fermilab

S. Nagaitsev's talk

ICHEP 2022 XLI International Conference

International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Most important questions for Particle Physics

Plans for future energy frontier accelerators to drive particle physics discoveries

Nadia Pastrone

On behalf of the **Snowmass Multi-TeV Colliders Topical Group - AF4** Mark **PALMER**, Brookhaven National Laboratory – U.S.A. Nadia **PASTRONE**, Istituto Nazionale di Fisica Nucleare – Italy Jingyu **TANG**, Institute of High Energy Physics – China Marlene **TURNER**, Lawrence Berkeley National Laboratory – U.S.A. Alexander **VALISHEV**, Fermilab – U.S.A.

Nadia Patrone's talk

- Standard Model (SM) of particle physics is confirmed with high precision
- Fundamental questions are still open and unexplained
- A physics program must be envisaged to push the exploration of particle physics to the TeV energy scale and beyond to pursue:
- ➔ in-depth precise studies of the SM
- exploration of physics beyond the SM (BSM) to discover new particles and interactions

Colliders at the energy frontier are a unique tool for investigation 50 years at the forefront of scientific HEP discoveries! **Big Questions**

Evolution of early Universe Matter Antimatter Asymmetry Nature of Dark Matter Origin of Neutrino Mass Origin of EW Scale Origin of Flavor

> Exploring the Unknown

HEP 2022 International Conference on High Energy Physics
 Bologna (Italy)

6 07 2022 3

Multi-TeV concepts parameters

EP 2022

U.S. possible options

- A US-sited linear e+e- (ILC/CCC) Collider
- Hosting a 10 TeV range muon collider
- Exploring other e+e- collider options to fully utilize the Fermilab site

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$
			. e^-/e^+	ab^{-1}
HE-LHC	pp	$27 { m ~TeV}$		15
FCC-hh SPPC 125 TeV	$\mathbf{p}\mathbf{p}$	$100 { m TeV}$		30
LHeC	ер	$1.3 { m ~TeV}$		1
FCC-eh		$3.5~{ m TeV}$		2
CLIC	ee	$1.5 { m TeV}$	$\pm 80/0$	2.5
		$3.0~{\rm TeV}$	$\pm 80/0$	5
High energy muon-collider	$\mu\mu$	3 TeV		1
		$10 { m TeV}$		10

	The Buildings
 >Proton Source • PIP-III→target >μ Cooling 	Pres
≻Linac + RLA → 65 GeV	Collider Ring
►RCS 1 and 2 → 1000 GeV Tevatron-size 	
>RCS 3 → 5 TeV •Site filler accelerator	And the second s
10 TeV collider Collider Ring ~10 km	Artos Averanti and Artos Averant
	 PIP-III→target μ Cooling Linac + RLA → 65 GeV RCS 1 and 2 → 1000 GeV Tevatron-size RCS 3 → 5 TeV Site filler accelerator 10 TeV collider Collider Ring ~10 km

‡Fermilab

Multi-TeV e+e- Collider Based on Advanced Plasma and Structure Accelerators

- Acceleration goal: ~GV/m average gradients in wakefields → compact TeV colliders
- Three different collider design based on the energy source: laser pulses (LPA) or electron beams (PWFA, SWFA) and the medium sustaining the wakefields: plasmas (LPA,PWFA) or dielectric based structures (SWFA)
- All concepts will require extensive R&D efforts

ANA technology	PWFA	PWFA	PWFA	SWFA	SWFA	SWFA	LPA	LPA	LPA
Center-of-mass energy [TeV]	1	3	15	1	3	15	1	3	15
Beam energy [TeV]	0.5	1.5	7.5	0.5	1.5	7.5	0.5	1.5	7.5
Geo. Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	1	10	50	1	10	50	1	10	50
Particles/banch [10 ⁹]	5.0	5.0	5.0	3.1	3.1	3.1	1.2	1.2	7.5
Single beam power [MW]	1.7	16.8	15.5	2.8	27.0	24.8	4.5	13.5	10.3
RMS bunch length [µm]	5	5	5	-90	-10	40	8.5	8.5	2.2
Repetition rate [kHz]	4.2	14	2.6	11	36	6.6	47	47	1.1
Facility site power (to main) [MW]	22.4	224	206	16.9	166	152	113	338	344

Nadia Patrone's talk

ICHEP 2022

International Conference on High Energy Physics Bologna (Italy)

07 2022

FCChh/SppC vs Muon Collider

A 100 TeV proton-proton collider (e.g. FCC-hh, SppC) provides an effective energy reach similar to that of a 10-TeV scale muon collider with sufficient integrated luminosity

The 100 TeV hadron collider will have an advantage when it comes to searching for colored states, while the muon collider naturally is stronger for EW states

One of the key measurements from the multi-TeV colliders is the measurement of the Higgs self-coupling measurement to a precision of a few percent, and the possibility of scanning (establishing?) the Higgs potential Energy at which $\sigma_{pp} = \sigma_{\mu\mu}$

Strong synergy on High Field Magnets R&D and much more!

International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

Introduction

Collaboration

Previous studies in US (now very strong interest again), experimental programme in UK and alternatives studies by INFN

New strong interest:

- Focus on high energy
 - 10+ TeV
 - potential initial energy stage
- Technology and design advanced

New collaboration started

Initial integrated luminosity targets

- could be reached in 5 years
- to be refined with physics studies

Discovery reach

14 TeV lepton collisions are comparable to 100-200 TeV proton collisions for production of heavy particle pairs

D. Schulte's talk

D. Schulte

Muon Collider, ICHEP, July 2022

ICHEP 2022 BOLOGNA International Conference on High Energy Physics
 Bologna (Italy)

3 07 2022

Initial Target Parameters

Target integrated luminosities					
\sqrt{s}	$\int \mathcal{L} dt$				
$3 { m TeV}$	$1 {\rm ~ab^{-1}}$				
$10 { m TeV}$	$10 { m ~ab^{-1}}$				
$14 { m TeV}$	20 ab^{-1}				

Note: currently focus on 10 TeV, als explore 3 TeV

- Tentative parameters based on • MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years
- Aim to have two detectors

						MHON Callida
	Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV
	L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)
	N	10 ¹²	2.2	1.8	1.8	
	f _r	Hz	5	5	5	
	P _{beam}	MW	5.3	14.4	20	28 MW
	С	km	4.5	10	14	
so		Т	7	10.5	10.5	
	ε	MeV m	7.5	7.5	7.5	
	σ _E / E	%	0.1	0.1	0.1	
	σz	mm	5	1.5	1.07	
	β	mm	5	1.5	1.07	
	ε	μm	25	25	25	
	σ _{x,y}	μm	3.0	0.9	0.63	
e	Muc	on Collider, ICHEP	, July 2022			

ICHEP 2022

R&D from 2021-2026 needs manpower and financial fund

Scenario	FTEy	M MCHF
Full scenario	445.9	11.9
Reduced scenario	193	2.45

D. Schult

D. Schulte's talk

ICHEP 2022 XLI International Conference on High Energy Physics Bologna (Italy)

6 13 07 2022

D. Schulte

Muon Collider, ICHEP, July 2022

D. Schulte's talk

ICHEP 2022

 International Conference on High Energy Physics
 Bologna (Italy)

6 13 07 2022

Timeline

Goals for next strategy

- Assessment report
- R&D plan ready for implementation

Prudently explore if MuC can be option as next project (i.e. operation mid 2040s)

- e.g. in Europe if higgs factory built elsewhere
- very strong ramp-up required after 2026
- some compromises on initial performance

D. Schulte's talk

07/07/2022

Université de Paris

FACULTÉ

universite

DES SCIENCES

CNIS

International Conference on High Energy Physics

PERLE: The development of a multi-turn, high current ERL

Bologna, July 7th 2022

By Walid KAABI on behalf of PERLE Collaboration

ICHEP 22

The short summary of the PERLE@Orsay Genesis

- <u>ep collisions at LHC</u>. It appeared that the ideal machine combines the proton of LHC (from 7 TeV up to 13 TeV) with an electron beam of 50-70 GeV and a target luminosity of 10³⁴ cm⁻²s⁻¹.
- \rightarrow the electron machine is an **ERL**, with in summary current = 20mA, 3+3 passes (to reach 60 GeV)

Loss compensation 2 (90m)

Matching/aplitter

LHeC

FCC-eh Linac 1 (1008m)

Loss compensation 1 (140m)

Arc 2,4,6

(3142m)

Injector

Injector

Arc 2,4,6

Evpass

 $sqrt(s_{ep}) = 1-4 TeV$

1206.2913, JPhysG

2007.14491, JPhysG

L(HERA) x 1000

(ERL and LHC)

07/07/2022

ICHEP 22

07/07/2022

ICHEP 22

PERLE Timeline for TDR phase and beyond

Walid KAABI's talk