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WHAT IS MODULUS




Al IS ALREADY TRANSFORMING EVERY INDUSTRY

Demand for Fast and Easy Deployment Greater than Ever

CREDIT CARD FRAUD CONTACT CENTER Al MEETING TRANSCRIPTION PUBLIC SAFETY
1.1B Credit Transactions / Day 500M Calls / Day 15B Meeting Minutes / Day > 1B Smart City Cameras Deployed

e

PRODUCT RECOMMENDATIONS  RETAIL ASSET PROTECTION MEDICAL IMAGING INDUSTRIAL INSPECTION
300M E-commerce Visitors / Day $275M Inventory Loss / Day 10M Diagnostic Scans / Day 94M Vision Sensors Installed by 2025

4 A NVIDIA.



Al POWERED COMPUTATIONAL DOMAINS

Computational Eng.

Solid & Fluid
Mechanics,

Electromagnetics,
Thermal, Acoustics,
Optics, Electrical,
Multi-body Dynamics,
Design Materials,
Systems

Earth Sciences

Climate
Modeling,

Weather
Modeling,

Ocean Modeling,

Seismic
Interpretation

Life Sciences
Genomics,
Proteomics

Computational
Physics

Particle
Science,

Astrophysics

Computational
Chemistry

Quantum
Chemistry,

Molecular
Dynamics

NVIDIA.




A

Neural
Network

Data

Physics-ML categorization

Neural B
Operator

Physics
constrained

Physics-
Informed

Physics

Back-propa:L,JthJr[O
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SimNet > Modulus

SimNet

A Neural Network Based Partial Differential Equation Solver

|
7

L 4

A=

NVIDIA Modulus

A

Framework

for Developing Physics Machine Learning Neural

Network Models

PyTorch/TensorFlow: Al

Modulus: Al For Science

PRODUCT OVERVIEW DOCUMENTATION

History & Current Version:

EA in June 2020
First GA in June 2021, v21.06

EA in April 2022 - v. 22.03
Latest release in July 2022 - v. 22.07
Next scheduled release 22.09 (Sept. 2022)

DOWNLOAD

7 I NVIDIA.


https://docs.nvidia.com/deeplearning/modulus/index.html
http://developer.nvidia.com/Modulus
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/modulus/containers/modulus

Constructive solid

Geometry module
Boolean compasitions,
Explicit geometry
parameterization,
Continuous/Discrete point
cloud sampling, Quasi-
random sampling,
Importance sampling,
Analytical SDF

Tessellated

Geometry module
Continuous/Discrete point
cloud sampling, Ray Tracing
for SDF approximation

Datasets
Train domain,
Maonitor domain,
Validation domain,
Inference domain

User Data

Simulation, Measured,
Validation, BC/ICs

Results & Visualization
Omniverse (in works), ParaView, TensorBoard

Modulus

Symbolic PDE

module
CFD w/ turbulence, Multi-
material heat transfer,
linear Elasticity, Acoustics,
Electromagnetics,
Normalization &
nondimensionalization of
PDEs,
* Reactive flows (in works)

Neural Network

Architectures
Standard MLP, Fourier
feature network & its

variants, DeepONet, SiReN,
CNN, Mesh-free network,
Radial basis network
* DCT-RNN network for
temporal prablems (in
works), FNO (in works)

Modulus Node

Customization
module

Custom loss functions, hFTE
algorithm for CHT,
Variational form of PDE
losses, Exact/Integral
continuity for NS Metwork
output scaling,

* Exact BCs imposition (in
works)

Efficient unrolling of the computational graph

Loss functions

Modulus Solver

TensorFlow/PyTorch/JAX

High-performance training/inference
Single GPU/Multi GPU/Multi node, XLA kernel fusion, TF32 computation, AMP

Design optimization & space exploration

Neural network

Optimization
module
Optimizers, Gradient
aggregation, Loss weighting
schemes (e.g. Learning rate
annealing), Learning rate
scheduling & scaling

Optimizer

Trained Network
Checkpoints
Required for transfer
learning & decoupled-
physics problems

8 NVIDIA.



Framework Features

Fully Connected (FC)
Fourier Feature Network

Sinusoidal Representation Network

Bringing novel Al architectures that have demonstrated success for

Fourier Neural Operator (FNO) ) ) .
engineering and science problems
Adaptive Fourier Neural Operator (AFNO)
FourCastNet
DeepONet Using reference examples to show which of the curated architectures are
applicable to certain class of problems
Physics Informed Neural Operators:
PINO (PINN+FNO)

physics informed DeepONet

others:
Pix2Pix Net
Super Resolution Net

9 NVIDIA.
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Physics-Informed neural Networks (PINN)

u+Asu] =0, x€Q, te(0,T], Nx is the differential operator
u(x,0) = h(x),
u(x,r) =g(x,t), x€dQ,tel0,T], Q and 9Q are domain & boundary

X € Q, X and [ are spatial and temporal coordinates

INPUT = OQUTPUT

u(x,t) is approximated by a neural network: (x,) uyy (x, 1)

. 1 Y o -
loss function: L=~Y lu (1) + A[u(x, 1) |
rizl

1 Nub . .
L:Lr+Lb+LO) Lb_]\_rb;“(xlarl)—glf

Ly —L% ‘u(xi 1) —h‘.|2
_NO i=1 7 -

L, £, and Ly penalize the residuals of governing egs, BC and IC

N,, N, and N, are the number of data points for different terms .

@A NVIDIA,



Schematic of a PINN framework
A B
@R R, = u(x,7) - g(x,?) BC

/ @ N\ R, = u(x,0) - h(x) o

@ Re = u; + Nx|u] Residual

\/ /
Back-propagation B
x‘\‘ L 0SS M—L—I—Lb—l—.ﬂo




NEURAL OPERATOR




Fourier Neural Operator

®—> Fourier layer 1{—Fourier layer2(— @ ® ® —»FourierlayerT* The Fourier layer consists of three steps:

* Fourier transform

Fourier layer

e Linear transform on the lower Fourier modes R

\. :. - Inverse Fourier transform

Vi () = o(Wy (x) + 'C}-_I(Rd,?(vg)))

Fast. FFT has complexity O(n log n).
ky*v, = F N F k) F ()
Efficient. More efficient to represent PDE in Fourier space.

d
?(—d J@x) =2xilF(f)
X

Fourier neural operator for parametric partial differential equations https://arxiv.org/abs/2010.08895 <ANVIDIA
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Adaptive Fourier Neural Operator

t ¢t t 1

L layers

[

Channel Mixing

FFT-based

Global Conv.

| IFFT I

(GFNet ‘

ol

/
S\ d) (hwd) )

[

Spatial Mixing

t

i t 1 t

Patch and Position Embedding

t 1 t

\ (h.w.d) (h,w,d,d) J

("AFNO
—’l\-
_x.‘ij ase
l — W@ E

\(h. w,d) k*MLP(d/k,d’k)

AFNO: Three steps to improve scalability and robustness

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers

Block-Diagonal Structure on W

Adaptive Weight Sharing
Adaptive Soft-Thresholding

Models Complexity (FLOPs) Parameter Count
Self-Attention | N?d + 3Nd? 3d*

GFN Nd+ Ndlog N Nd

FNO Nd? + Ndlog N Nd?

AFNO (ours) | Nd?/k+ NdlogN (1 +4/k)d* + 4d

https://arxiv.org/abs/2111.13587

Cityscapes mloU

AFNO
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Lid Driven Cavity Flow
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Equilibrium:
Stress-Strain:

Strain-Displacement

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Linear Elasticity

ojij + fi =0,

Oij = NegrOij + 2pe;j,

1
. €ij = 5 (':';‘,-5‘_-_,' —+ ’H.-J',i) .

O

=4

(a) u (SimNet)

»

;,‘/
~

(d) v (SimNet)

7

(g) w (SimNet)

(j) ovar (SimNet)

(b) u (Commercial solver)

_—_
.

(¢) v (Commercial solver)

7

(h) w (Commercial Solver)

(k) ovar (Commercial Solver)

(¢) u (Difference)

(f) v (Difference)

(i) w (Difference)

(1) ovar (Difference)

18
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Seismic Problems

2D acoustic wave equation:

. dza(f,x,y) As
dz?

du(t,x,
(‘f!x:_}')'l_”%:?(f’x?.}?;xs’.}lsj

Single Ricker wavelet source location in the middle
Constant and Layered Velocity models

Initial conditions: u(x,y,0) =0

Boundary conditions: Open BC

Training Loss function = physics loss + Boundary loss

L(6:T) = wiLls(6: Ty) + woly(6: Tr).

1 di o 9% 924 2
Le(8;° = — e R et == P —— . A
1(8:7;) T );I Hf (X' dxq "Oxg Ox1011 S dx10xg ' )
1 .
Ly(0:Tp) = G Z 1B, x)|13,
Pl xeT,

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.
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Seismic Problems

Wave propagation with layered velocity

SimNet t=350ms , Devito: t=350ms , SimNet t=750ms , Devito: t=750ms

20 40 60 B0 100 120
NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.




2D Waveguide Cavity

Electromagnetics: Maxwell’s Equations

PEC
hud
o
[e
E 8
=) <
[0}
>
©
=
PEC

Figure 42: Domain of 2D waveguide

In this example we will solve this waveguide problem by transverse-magnetic (1'M,) mode, so that our unknown
variable is E, (2, y). The governing equation in 2 is

AEZ(ET?/) + kQEZ(mty) = 0?

where k is the wavenumber. Notice in 2D scalar case, the PEC and ABC will be simplified in the following form,
respectively:

IE
E,(x,y) = 0 on top and bottom boundaries, E)—Z = 0 on right boundary.
Y

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.
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DIGITAL TWINS
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HRSG FLUID ACCELERATED CORROSION
SIMULATION — SIEMENS ENERGY

Use Case

= Detecting and predicting point of corrosion in heat recovery
steam generators (HRSGs)

Challenges

= Using standard simulation to detect corrosion, it took SE at
least couple of weeks, and the overall process took 14-16
weeks for every HRSG unit.

Solution

= Using NVIDIA Modulus Physics-Informed Neural Network, SE
simulates the corrosive effects of heat, water and other
conditions on metal over time to fine-tune maintenance
needs.

= SE can replicate and deploy HRSG plant digital twins
worldwide with NVIDIA Omniverse.

NVIDIA Solution Stack

= Hardware: NVIDIA V100 & A100 Tensor Core GPUs

= Software: NVIDIA Modulus, NVIDIA Omniverse

Outcome

= 10,000X speed-up and inference in seconds can reduce
downtime by 70%, saving the industry $1.7 billion annually

Link to Demo <ANVIDIA.  SIEMENS



https://youtu.be/JLboPXn6sKI

WIND TURBINE WAKE OPTIMIZATION —
SIEMENS GAMESA

Use Case

= Developing optimal engineering wake models to optimize wind
farm layouts

= Simulating the effect that a turbine might have on another when
placed in close proximity

Challenges

= Generating high-fidelity simulation data from Reynolds-averaged
Navier-Stokes (RANS) or Large Eddy Simulations (LES) can take
over a month to run, even on a 100-CPU cluster.

Solution

= NVIDIA Omniverse and Modulus enable accurate, high-fidelity
simulations of the wake of the turbines, using low-resolution
simulations as inputs and applying super resolution using Al.

NVIDIA Solution Stack

= Hardware: NVIDIA A100, A40, RTX 8000 GPUs
= Software: NVIDIA Omniverse, NVIDIA Modulus

Outcome
= Approximately 4,000X speedup for high-fidelity simulation

= Optimizing wind farm layouts in real-time increases overall
production while reducing loads and operating costs.

Demo &ANVIDIA.  SIEMENS Gamesa



https://www.youtube.com/watch?v=mQuvYQmdbtw

ACCELERATING EXTREME WEATHER
PREDICTION WITH FourCastNet IN
NVIDIA MODULUS

Use Case

= Climate change is making stormsboth stronger and less predictable, leading to
more fires, floods, heatwaves, mudslides, and droughts.

= Predicting global weather patterns and extreme weather events, like
atmospheric rivers, is important to quantify any catastrophic event with
confidence.

Challenges

= To develop the best strategies for mitigation and adaptation, we need
climate models that can predict the climate in different regions of the
globe over decades.

Solution

= NVIDIA has created a physics-ML model that emulates the dynamics of
global weather patterns and predicts extreme weather events, like
atmospheric rivers, with unprecedented speed and accuracy.

NVIDIA Solution Stack

= Hardware: NVIDIA A100

= Software: NVIDIA Omniverse, NVIDIA Modulus

Outcome

= Powered by the Fourier Neural Operator, this GPU-accelerated Al-enabled
digital twin, called FourCastNet, is trained on 10 TB of Earth system data.

= Using this data, together with NVIDIA Modulus and Omniverse, we are
able to forecast the precise path of catastrophic atmospheric rivers a full
week in advance.

Demo <ANVIDIA.



https://www.youtube.com/watch?v=mQuvYQmdbtw

Modulus - Omniverse integration

] Modulus Extension in Omniverse
Interactive
exploration q

Model inference Model Outputs Vis;igle"fi?]te"on Output Rendering

= Modulus training and inference workflows are python API based and the resulting trained model outputs

are brought in as scenarios into OV using this extension.

» What does Modulus Omniverse extension do?

= enables importing outputs of Modulus trained model into a visualization pipeline for common output scenarios ex:

streamlines, iso-surface

= provides an interface that enables interactive exploration of design variables/parameters to infer new system

behavior SANVIDIA



Modulus - Omniverse integration

[+]
a
]
3]
]
]
]
e
]
e

imag_instance/slice z fpga_fpga velmag group/surfaces/slice z fpga_fpga_velmag surface/geometry/slice z fpga_fpga velmag geometry has corrupted data in primvar displayColor: buffer size 1 doesn't match expected

Common visualization modes such as Isosurface, Streamlines, Slices are available.

Each mode will populate the geometry, which will be updated as you change parameters.

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE. 27 @A NVIDIA,



ADVANTAGES




Inverse Problem

Finding Unknown Coefficients of a PDE: Heat Sink

29e+02 310 320 330 340 35e+02
| n ‘ "o

. o k ui
Fluid Heat Convection: 0=V (Ds1iaVOsiia) — V - (U0 fruia) Dipyiqg = —1244
P fluidCpfluid

. o kso 2
Solid Heat Conduction: 0= V- (FaotiaVOsotia) Dyotia = pTcld;d

SOl pSO )

Osolid = O f1uid
Interface Conditions:
ksotia(N - VOsoria) = kfiuia(N - VOriyia)

Property OpenFOAM (True) | SimNet (Predicted)
Results: Kinematic Viscosity (1m?/s) 1.00 x 10~* 1.03 x 10~*
Thermal Diffusivity (m?/s) 2.00 x 1073 2.19 x 1073
29 A NVIDIA.




Parameterized Simulation: 3D heat sink
Multi Physics Application: Fluids + Heat Transfer

hcenr,‘ran!fﬂ'n = (DO, 0.6 )

hs’ide_fﬂ?ns

)
0.0,0.6),
)

lcenr,‘ran!fﬂ'n = 05, 1.0

tcentralﬁn = 0-05,0.15)
tsidefins = (0.05,0.15)

(
(
lsidefins = (0.5, 1.0)
=
(

Variable/Function

Description

minimize Peak Temperature

with respect to hcentraifin: hs’ideﬁns:

lcentralfin . Isideﬁns -

tcem‘.rmlﬁn: fsidefins

subject to Pressure drop < 2.5

Minimize the peak temperature at the
source chip

Geometric Design Variables of the Heat
Sink

Limit on the pressure drop. Maximum
value of the pressure drop that can be pro-
vided by the cooling system

Solver

OpenFOAM  SimNet

Compute Time (hrs)

4099 120

30
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Transfer Learning: Blood Flow

Acceleration Of Training

Full training

TL training
b
0.01 \\k"/ \ﬁ j
, ) ™

0 400k 800k 1.2M
lterations

Training loss
o
o
N

31
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Multi-GPU/Node Performance

Points per ms

Time per iteration

XLApoints/ms == == |deal XLATime/ iteration == wm |deal
04
27
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-~ 5 02

~ y

1000 - 2
500 et = o

-
A
”
-
-
4 0.0
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
GPUs GPUs
(a) Points per ms (b) Time per iteration

weak scaling plots for flow over an annular ring problem

Speadup = w= [doal Speedup @ Efiiciency  « = Ideal Efficizncy
Time /fzrafion e = dzal

. 50
08 ™~ 1.00
04 e
-
02 T o 075 =
S = 0 I
S B @
01 == @ 5 050 S
~a Q. =]
0.06 ~o n ]
0.04 =~ 025
~.
0.02 S
~a. 1 000
8 16 3 64 128 256 §12
GPUs
GPUs

(b) Speedup (green, left axis) and scaling efficiency (purple, right

a) Time per iteration .
@ p axis)

strong scaling results for the Taylor-Green vortex problem

ZINVIDIA.



CONCLUSION




NVIDIA MODULUS

Framework for developing physics machine learning neural network models

What’s Modulus?

a Framework for developing physics-ML models (Similar to TensorFlow/PyTorch)

Al model Physics
s p K & § 9
[ Channel Mixing X8 Residual Blocks
[[ Spatial Mixing
1 t 1 t g

Patch and Position Embedding

)
:

Neural Operator

gLzl |8
ZHWL z
sl |x S
of || |o

Back-propagation
\'\_—/ Gttt

Physics-Informed neural Networks

Where can Modulus be used?

CFD, Thermal, Solids, Acoustics(Seismic Wave), Electromagnetics(Maxwell’s Equation),Weather Forecast,

What are the advantages?

Full training

Time per iteration

y
Training loss
o o o o
o o © o
o 2 8 8 8

29e+02 310 320 330

e

340 35e+02

| - 0 400k 800k
Iterations

Inverse Problem
NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Parameterized Simulations Transfer Learning

x3 Upscaling Blocks

r

Super Resolution Network

Super Resolution

© Time/fizration e e |deal

GPUs

Multi GPUs

I NVIDIA.
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FRERSBE

Accelerating a New Path to Innovation, Efficiency, and Discovery [A41237]

Journey Toward Zero-Carbon Emissions Leveraging Al for Scientific Digital Twins [A41224]
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https://github.com/openhackathons-org/gpubootcamp/tree/master/hpc_ai/PINN

THANKS




