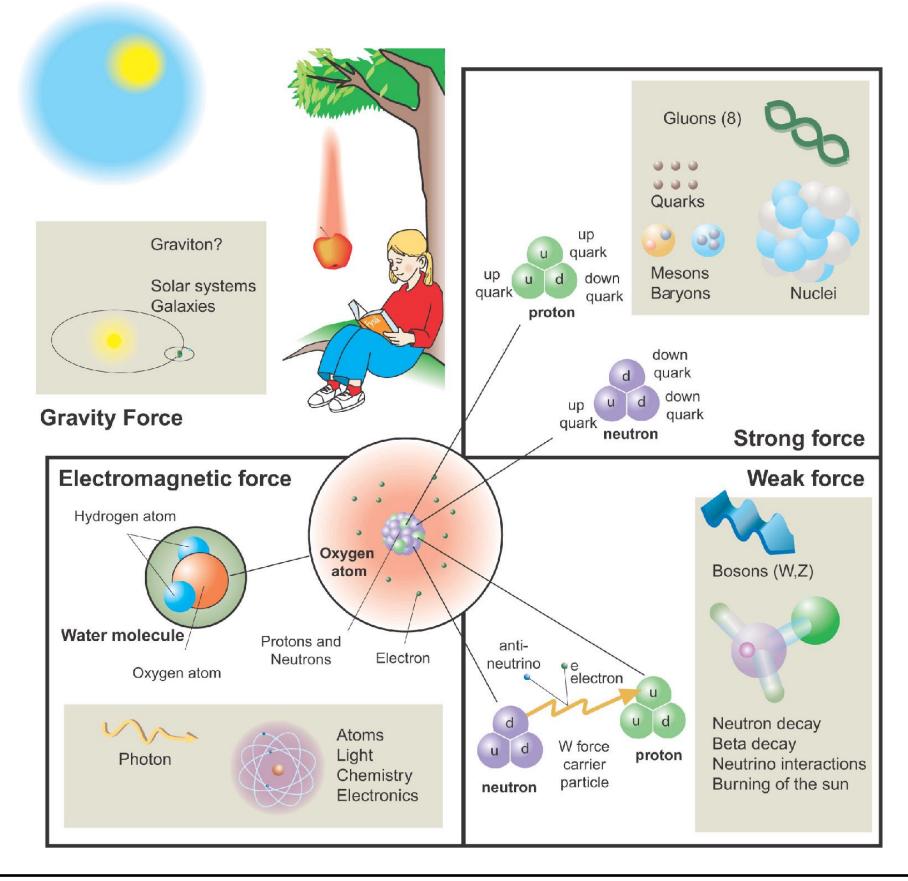


高能物理中的高性能计算技术

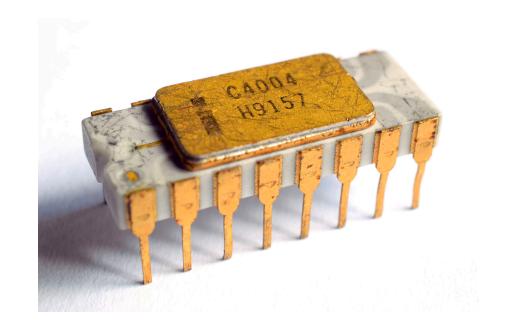

Wei Sun (孙玮)

Computing Center, Institute of High Energy Physics

IHEP School of Computing 2022, 2022.8.17-19

Contents

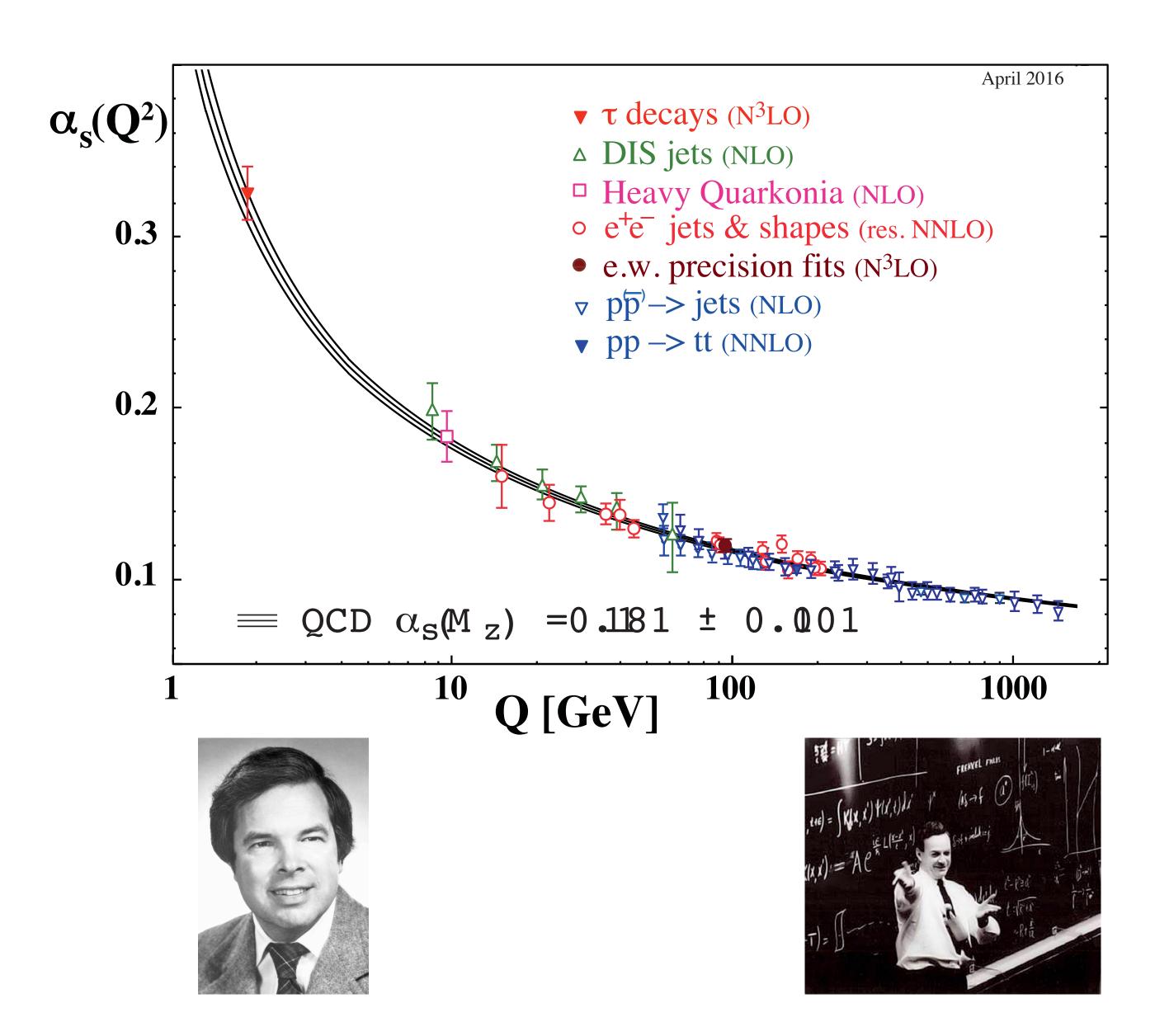
- Introduction
- High performance computers and supercomputers
- Parallel programming models
- Case study with HPC in high energy physics
- Summary and tips

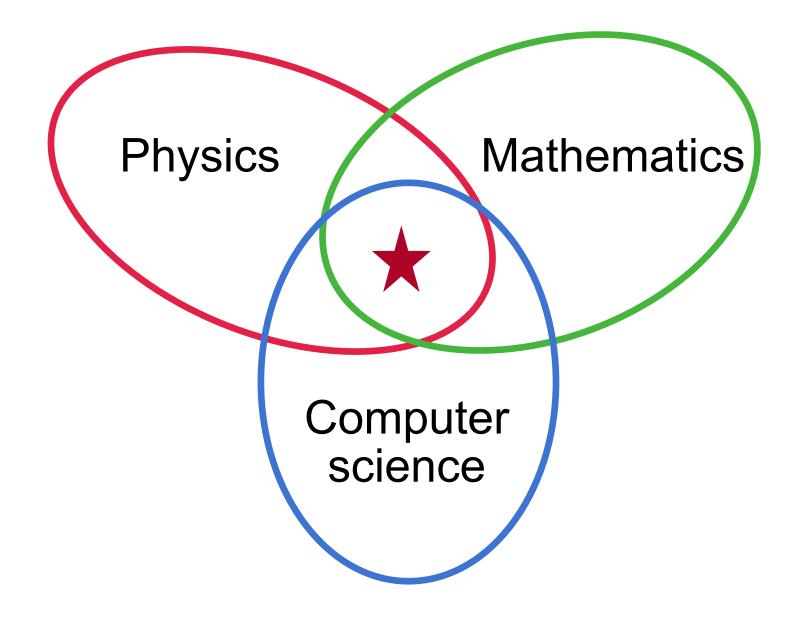

Standard Model

Weinberg-Salam theory

Electromagnetic interaction Weak interaction

Quantum Chromodynamics


Strong interaction


classical computer

quantum computer

- analytical method at high energy
- numerical Monte Carlo method at low energy

Computational	Current	2025	$\operatorname{Current}$	2025	2025 Network	
Task	Usage	Usage	Storage (Disk)	Storage (Disk)	Requirements (WAN)	
Accelerator	$\sim 10M - 100M$	$\sim 10G - 100G$				
Modeling	m core-hrs/yr	$\operatorname{core-hrs/yr}$				
Computational	$\sim 100 \mathrm{M} - 1 \mathrm{G}$	$\sim 100 \mathrm{G} - 1000 \mathrm{G}$	$\sim 10 \mathrm{PB}$	>100PB	$300 \mathrm{Gb/s}$	
Cosmology	core-hrs/yr	$\operatorname{core-hrs/yr}$			(burst)	
Lattice	~1G	$\sim 100 \mathrm{G} - 1000 \mathrm{G}$	~1PB	>10PB		
QCD	m core-hrs/yr	${ m core-hrs/yr}$				
Theory	$\sim 1\mathrm{M}-10\mathrm{M}$	$\sim 100 \mathrm{M} - 1 \mathrm{G}$				
	m core-hrs/yr	$\operatorname{core-hrs/yr}$				
Cosmic Frontier	$\sim 10 \mathrm{M} - 100 \mathrm{M}$	$\sim 1\mathrm{G}-10\mathrm{G}$	~1PB	10 - 100 PB		
Experiments	m core-hrs/yr	$\operatorname{core-hrs/yr}$				
Energy Frontier	~ 100M	$\sim 10G - 100G$	~1PB	>100PB	$300 \mathrm{Gb/s}$	
Experiments	m core-hrs/yr	$\operatorname{core-hrs/yr}$				
Intensity Frontier	$\sim 10 \mathrm{M}$	$\sim 100 \mathrm{M} - 1 \mathrm{G}$	~1PB	10 - 100 PB	$300 \mathrm{Gb/s}$	
Experiments	m core-hrs/yr	${ m core-hrs/yr}$				

ASCR/HEP Exascale Report [arXiv:1603.09303]

my definition

High Performance Computing pprox Numerical Linear Algebra on Supercomputers

Jack J. Dongarra, 2021 Turing Award Laureate

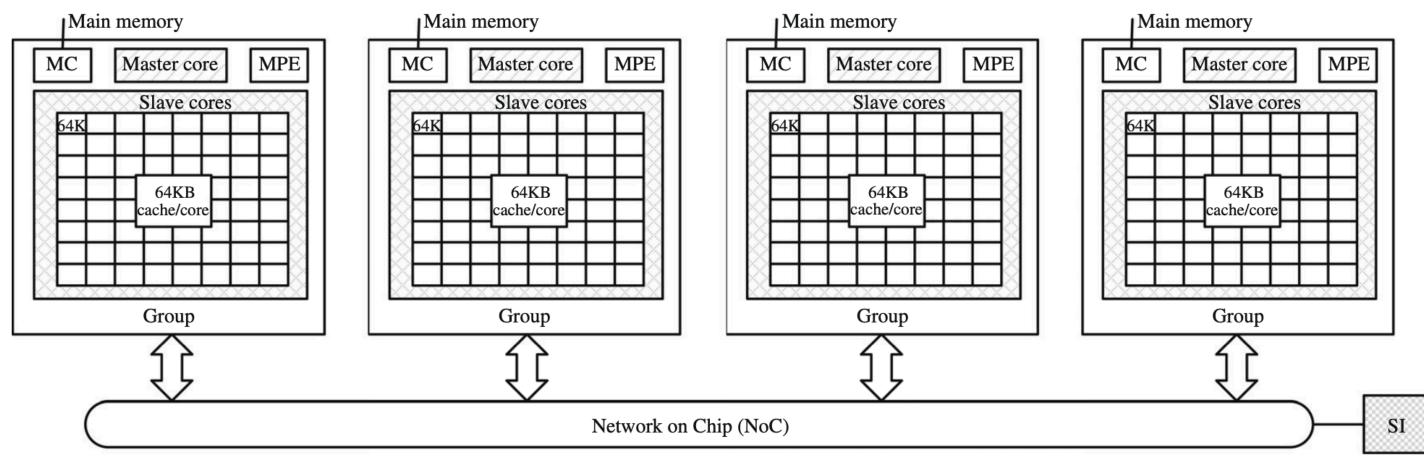
- primary implementor or principal investigator for many libraries such as LINPACK, BLAS, LAPACK, ScaLAPACK etc.
- Autotuning: automatically finding algorithmic parameters that produce linear algebra kernels of near-optimal efficiency
- Mixed precision arithmetic: Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy
- Batch computations: Performance, design, and autotuning of batched GEMM for GPUs
- Message Passing Interface (MPI) standard

ACM Turing Award Honors Jack Dongarra for Pioneering Concepts and Methods Which Resulted in World-Changing Computations

Dongarra's Algorithms and Software Fueled the Growth of High-Performance

Computing and Had Significant Impacts in Many Areas of Computational

Science from AI to Computer Graphics

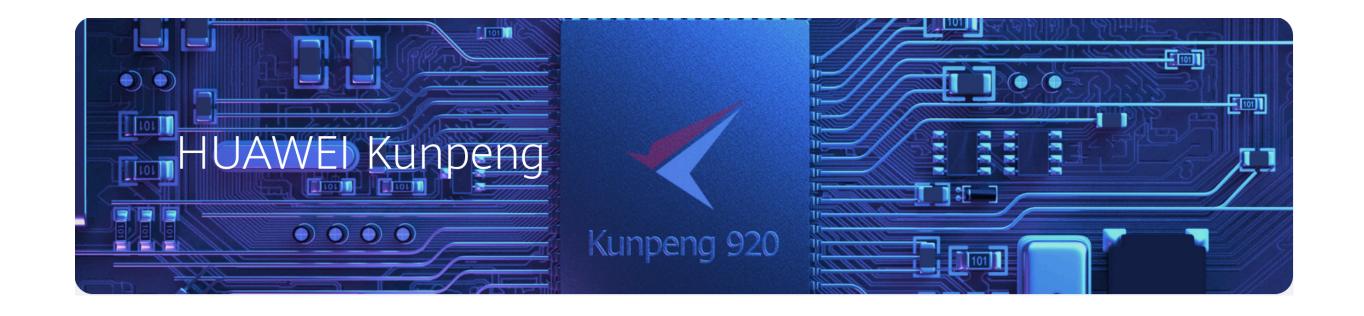

https://www.top500.org/lists/top500/2022/06/

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	1,110,144	151.90	214.35	2,942
4	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
5	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438

6	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371
7	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70.87	93.75	2,589
8	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63.46	79.22	2,646
9	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61.44	100.68	18,482
10	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI-CINES) France	319,072	46.10	61.61	921

Supercomputer example: Sunway TaihuLight

Fu, H., Liao, J., Yang, J. et al., Sci. China Inf. Sci. 59, 072001 (2016).


High performance clusters at IHEP

Nvidia V100 GPU: \approx 300 cards

x86 CPU: $\approx O(10000)$ cores

ARM CPU: $\approx O(10000)$ cores

LQCD with HPC

- Decades ago customized processors
- QCDOC (QCD On a Chip)

- Nowadays supercomputers / clusters
- TOP 500

LQCD awarded 1995,1998,2006 Goldon Bell Prize and 2018 finalist

Available online at www.sciencedirect.com

Computer Physics Communications 177 (2007) 631–639

Computer Physics Communications

www.elsevier.com/locate/cpc

Lattice QCD as a video game Before CUDA release!

Győző I. Egri ^a, Zoltán Fodor ^{a,b,c,*}, Christian Hoelbling ^b, Sándor D. Katz ^{a,b}, Dániel Nógrádi ^b, Kálmán K. Szabó ^b

^a Institute for Theoretical Physics, Eötvös University, Budapest, Hungary

^b Department of Physics, University of Wuppertal, Germany

^c Department of Physics, University of California, San Diego, USA

Received 2 February 2007; received in revised form 29 May 2007; accepted 7 June 2007

Available online 15 June 2007

Common programming language in HPC

- Fortran (Formula Translation)
 - Oldest high level programming language, first compiler released in 1957
 - Designed for numerical and scientific computing
 - Highly efficient, still widely used in high performance computing today
- C
 - Flexible, efficient, ...
- C++
 - Efficient, abstract, multi-paradigm (procedural, object oriented, functional)
- Assembly
 - Highly efficient but not portable across different processor architecture
- Python
 - Slow in python itself, but with great library such as Scipy, very suitable for data processing, analysis and visualization

MPI + X model (cluster level + node level + processor level + instruction level)

- MPI (Message Passing Interface)
 - MPI is a communication protocol for programming parallel computers
 - The dominant programming model in high performance computing today
 - Support point-to-point and collective communication
 - MPI version 1.0 standard released in 1994
 - Directly callable from C, C++, Fortran
 - Very suitable for distributed memory system, therefore supported by all kinds of supercomputers
- Major implementation
 - MPICH (https://www.mpich.org/)
 - Open MPI (https://www.open-mpi.org/)
 - Many others derived from MPICH and Open MPI, such as Intel MPI, Cray MPI, IBM Spectrum MPI

MPI Basics

```
• Compile: mpicc hello world.c -o hello world
    #include <mpi.h>
     #include <stdio.h>

    Run: mpirun -np 4 hello world

     int main(int argc, char** argv) {
     · · · // Initialize the MPI environment
     ····MPI_Init(&argc, &argv);
 6

    NOTE: MPI is a library and mpicc is not a compiler, it is a wrapper

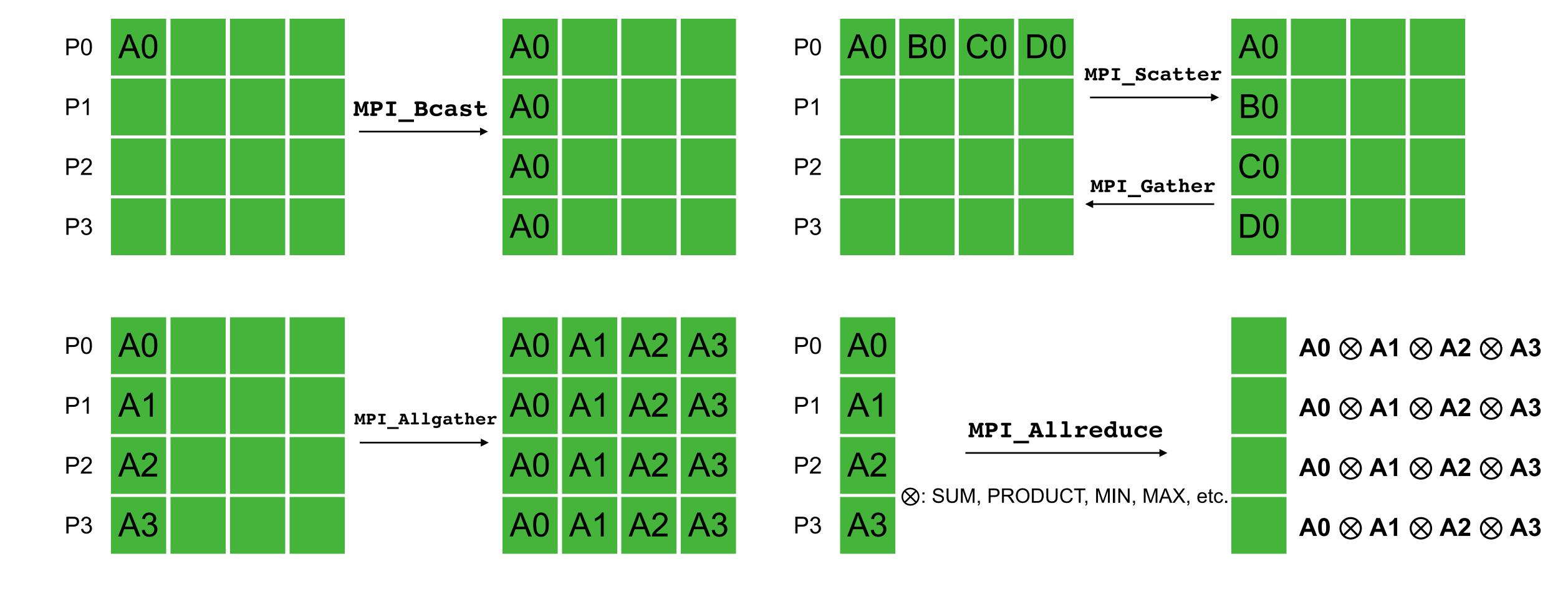
      --// Get the number of processes
                                              over regular C compiler
 8
 9
       int size;
10
        MPI_Comm_size(MPI_COMM_WORLD, &size);

    Use mpicc -show to see the compile and link flags

11
12
       ·// ·Get · the · rank · of · the · process
13
       int rank;
                                            • gcc -I /path to MPI/include -L /path to MPI/lib -lmpi
        -MPI_Comm_rank(MPI_COMM_WORLD, &rank);
14
15
16
       -//-Get-the-name-of-the-processor
17
        char processor_name[MPI_MAX_PROCESSOR_NAME];
18
        int name_len;
        MPI_Get_processor_name(processor_name, &name_len);
19
20
       // Print off a hello world message
21
        printf("Hello world from processor %s, rank %d out of %d processors\n",
22
      processor_name, rank, size);
                                                   Hello world from processor ui03.hep.ustc.edu.cn, rank 1 out of 4 processors
24
                                                   Hello world from processor ui03.hep.ustc.edu.cn, rank 2 out of 4 processors
        // Finalize the MPI environment.
25
                                                   Hello world from processor ui03.hep.ustc.edu.cn, rank 3 out of 4 processors
26
        MPI_Finalize();
                                                   Hello world from processor ui03.hep.ustc.edu.cn, rank 0 out of 4 processors
                                        output
27
```

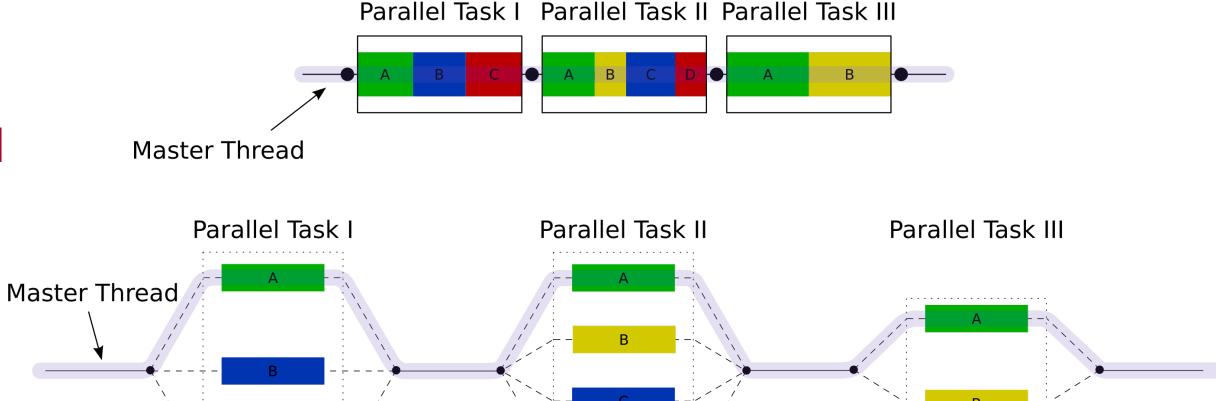
MPI Basics (point-to-point communication)

Total 400+ APIs


```
MPI_Send(
    void* data,
    int count,
    MPI_Datatype datatype,
    int destination,
    int tag,
    MPI_Comm communicator)
```

```
MPI_Recv(
    void* data,
    int count,
    MPI_Datatype datatype,
    int source,
    int tag,
    MPI_Comm communicator,
    MPI_Status* status)
```

```
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
int number;
if (world_rank == 0) {
   number = -1;
   MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
} else if (world_rank == 1) {
   MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
             MPI_STATUS_IGNORE);
    printf("Process 1 received number %d from process 0\n",
           number);
```


MPI Basics (collective communication)

Total 400+ APIs

OpenMP (Open Multi-Processing)

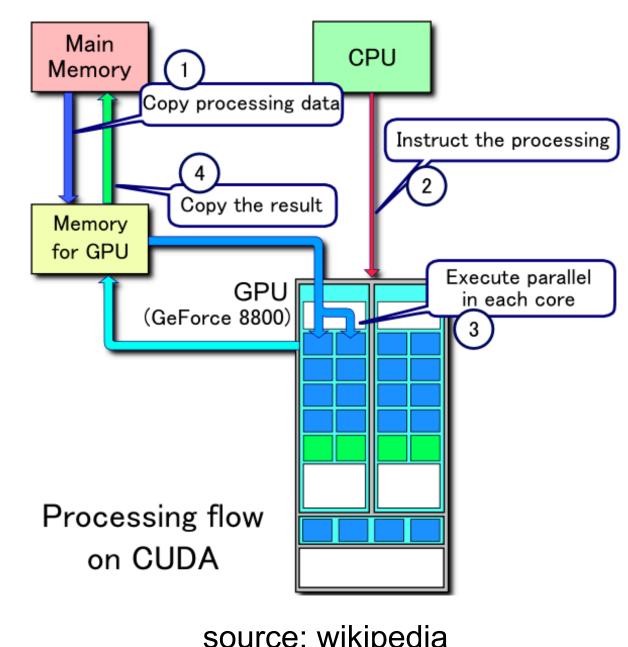
- Pros
 - API that supports various instruction set architectures, operating system, and C, C++, Fortran
 - First standard released in 1997
 - Compiler directive based
 - Simple, flexible, portable, scalable
 - Easy to modify existing serial code into parallel
 - OpenMP 4.0 and later version support GPUs
- Cons
 - Multi-threading programming is easy to implement but hard to debug in general
 - Need to deal with race condition very carefully
 - Only used for parallelism within a node
- Major implementation
 - GCC, Intel, Clang

source: wikipedia

OpenMP hello world example

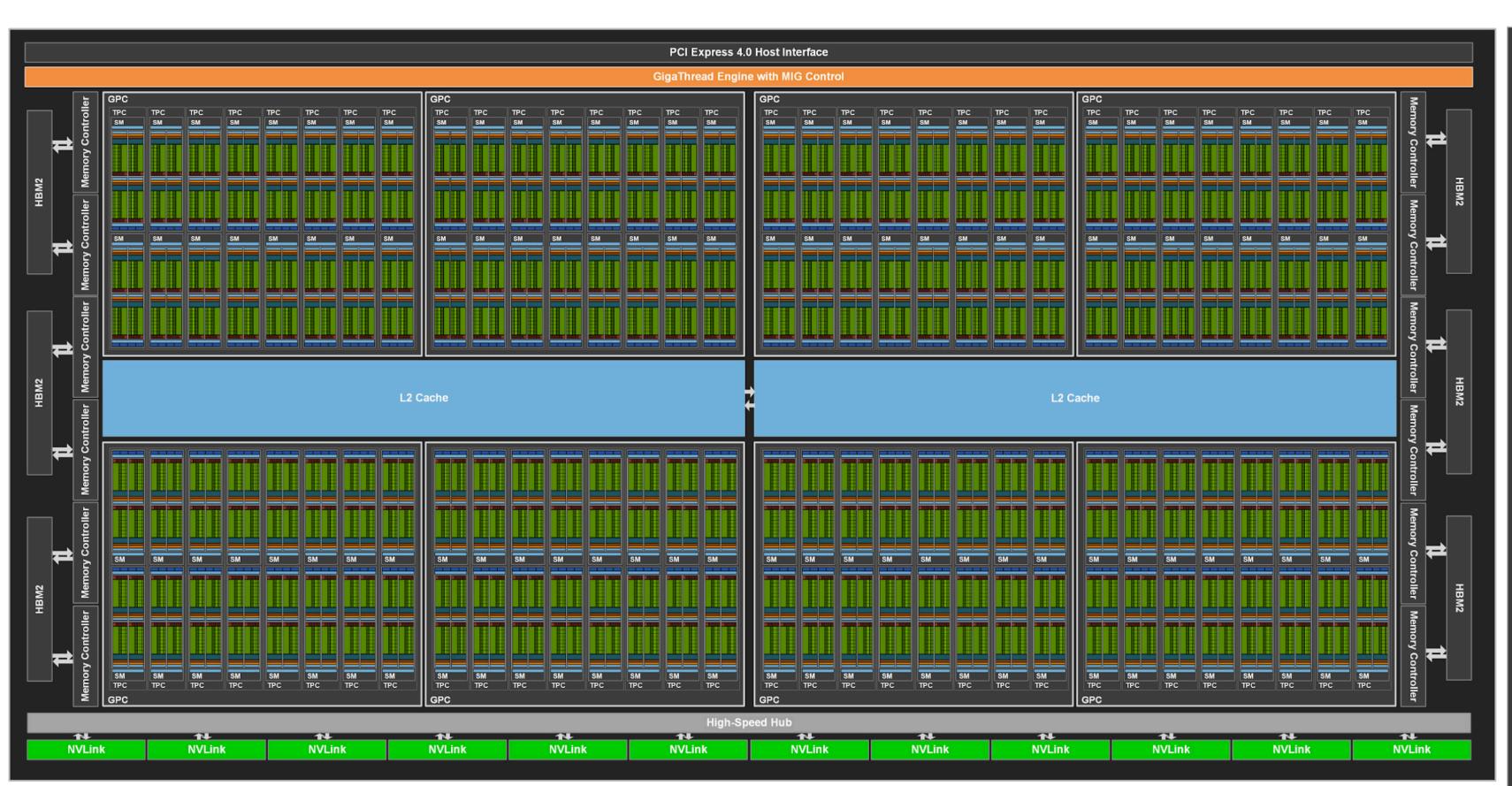
```
#include <omp.h>
     #include <stdio.h>
                                                                        #include <math.h>
     #include <omp.h>
                                                                        int main(int argc, char **argv) {
     int main(int argc, char **argv) {
                                                                        - const int N = 1000000;
     #pragma omp parallel
                                                                        ..int a[N];
                                                                   6
 6
      int threads_total = omp_get_num_threads();
      int thread_id = omp_get_thread_num();
                                                                        #pragma omp parallel for
 8
      printf("Hello, world from thread %d,"
                                                                        | for (int i = 0; i < N; i++) {
      "out of %d threads.\n ",
10
                                                                        |\cdot|\cdot|a[i]\cdot=sin(i);
                                                                  10
11
      |\cdot\cdot|\cdot\cdot|\cdot\cdot|\cdot\cdot| thread_id,
                                                                  11
                                                                        · · }
12
      ·················threads_total);
                                                                  12
13
                                                                  13
                                                                        ··return 0;
14
      ··return 0;
                                                                  14
15
                                                                  15
```

Compile: gcc -fopenmp hello world.c -o hello world


Run: ./hello_world # use all cores / hardware threads available on single node OMP_NUM_THREADS=4 ./hello_world # use 4 cores / hardware threads

OpenMP program monitored with htop

CPU	PID	USER	PRI	NI	VIRT	RES	SHR	S	CPU%	MEM%	TIME+	Command	
26	47947	sunwei	20	0	391M	2996	616	R	4786	0.0	1h23:25		<pre></pre>
24	47994	sunwei	20	0	391M	2 996	616	R	100.	0.0	1:44.33		<pre>/parallel_for_openmp</pre>
33	47993	sunwei	20	0	391M	2 996	616	R	100.	0.0	1:44.33		<pre>/parallel_for_openmp</pre>
23	47992	sunwei	20	0	391M	2 996	616	R	100.	0.0	1:44.34		<pre>/parallel_for_openmp</pre>
25	47991	sunwei	20	0	391M	2 996	616	R	100.	0.0	1:44.20		<pre>/parallel_for_openmp</pre>
22	47990	sunwei	20	0	391M	2 996	616	R	99.4	0.0	1:44.33		<pre>/parallel_for_openmp</pre>
48	47989	sunwei	20	0	391M	2 996	616	R	99.4	0.0	1:44.17		<pre>/parallel_for_openmp</pre>
21	47988	sunwei	20	0	391M	2 996	616	R	100.	0.0	1:44.34		<pre>/parallel_for_openmp</pre>
47	47987	sunwei	20	0	391M	2 996	616	R	100.	0.0	1:44.34		<pre>/parallel_for_openmp</pre>
46	47986	sunwei	20	0	391M	2 996	616	R	98.7	0.0	1:44.30		<pre>/parallel_for_openmp</pre>
16	47985	sunwei	20	0	391M	2 996	616	R	99.4	0.0	1:44.13		<pre>/parallel_for_openmp</pre>


CUDA for GPU computing

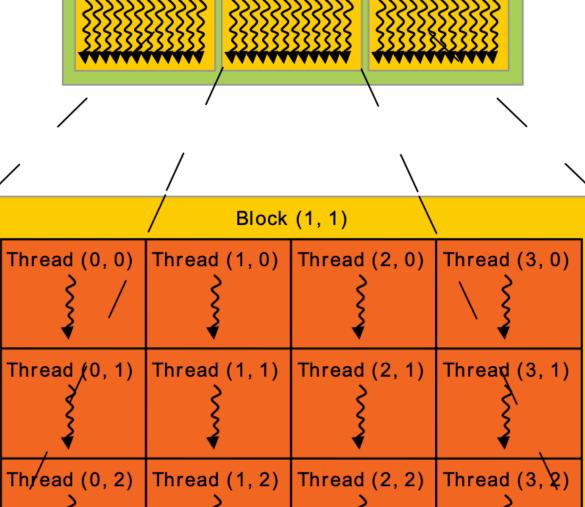
- CUDA (Compute Unified Device Architecture)
 - CUDA is a parallel programming framework and API for general purpose GPU (GPGPU) computing
 - Developed by Nvidia and support Nvidia's GPUs
 - Supported Tesla -> Fermi -> Kepler -> Maxwell -> Pascal -> Volta -> Turing -> Ampere -> Hopper
 - Directly callable from C, C++, Fortran
 - Need CUDA Toolkit to compile
 - Free but not open source
 - Multi-node GPU programming with CUDA-aware MPI
 - The HIP (Heterogeneous Interface for Portability) developed by AMD can is portable both for AMD and Nvidia's GPUs, and also free and open source

source: wikipedia

Details of GPU architecture

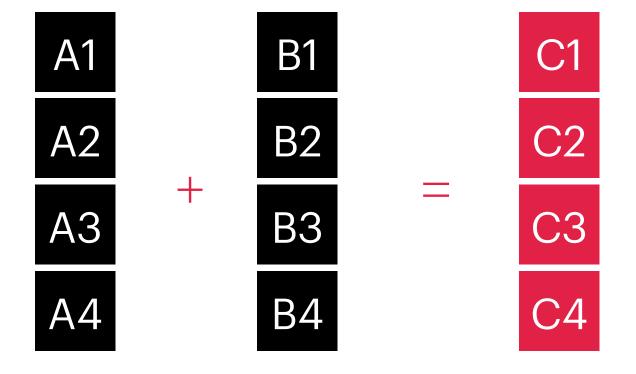
L1 Cache L1 Cache Core Core L1 Cache L1 Cache L2 Cache L2 Cache L3Cache L2 Cache DRAM DRAM GPU CPU Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk) Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) FP64 FP64 FP64 **TENSOR CORE TENSOR CORE** FP64 Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) FP64 FP64 **TENSOR CORE TENSOR CORE** FP64 192KB L1 Data Cache / Shared Memory

Core


More on CUDA C++ Programming Guide and Nvidia Ampere Architecture Whitepaper

Simple CUDA programming example

```
int main(int argc, char **argv) {
 int vectorSize = 50000;
 size_t size = vectorSize * sizeof(float);
 ·// Allocate the host memory for A, B, C
 float *h_A = (float *)malloc(size);
 float *h_B = (float *)malloc(size);
 float *h_C = (float *)malloc(size);
 ·//·Initialize the host input vectors A and B
 for (int i = 0; i < vectorSize; ++i) {</pre>
  - h_A[i] = rand() / (float)RAND_MAX;
   h_B[i] = rand() / (float)RAND_MAX;
 ·// Allocate the device memory for A, B, C
 float *d_A = NULL;
 cudaMalloc((void **)&d_A, size);
 float *d_B = NULL;
 cudaMalloc((void **)&d_B, size);
 float *d_C = NULL;
  cudaMalloc((void **)&d_C, size);
 ·//-Copy-the-host-input-vectors-A-and-B-into-device-memory
  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
  cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
```


```
·//·Launch·the·CUDA·Kernel
 int threadsPerBlock = 256;
int blocksPerGrid = (vectorSize + threadsPerBlock - 1) / threadsPerBlock;
vectorAdd <<<br/>blocksPerGrid, threadsPerBlock>>> (d_C, d_A, d_B, vectorSize);
·//·Copy·the·device·result·vector·back·to·the·host·result·vector
 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
                                                                           Grid
// Free the device and host memory
                                                                            Block (0, 0) Block (1, 0) Block (2, 0)
 cudaFree(d_A);
 cudaFree(d_B);
 cudaFree(d_C);
                                                                            Block (0, 1) Block (1, 1) Block (2, 1)
 free(h_A);
 free(h_B);
free(h_C);
 return 0;
* CUDA Kernel Device code, C = A + B
_global__ void vectorAdd(float *C, const float *A, const float *B,
int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < vectorSize) {</pre>
   C[i] = A[i] + B[i];
```

Thread Hierarchy

SIMD (Single Instruction Multiple Data)

- Vectorization: supported by x86 (SSE, AVX, AVX2, AVX512 etc.), Arm (NEON, SVE), PowerPC (AltiVec) etc.
- Implementation: optimized math libraries (such as Intel MKL), inline assembly, intrinsic function

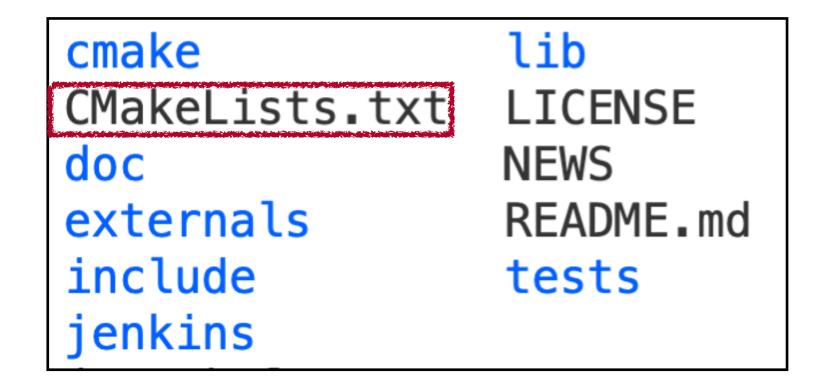
SIMD with intrinsic functions

No explicit SIMD

```
void add(float* out, const float* input1, const float* input2, int N)
{
    for(int i=0; i<N; i++){
        out[i] = input1[i] + input2[i];
    }
}</pre>
```

x86 AVX SIMD

ARM NEON SIMD


Software build tools

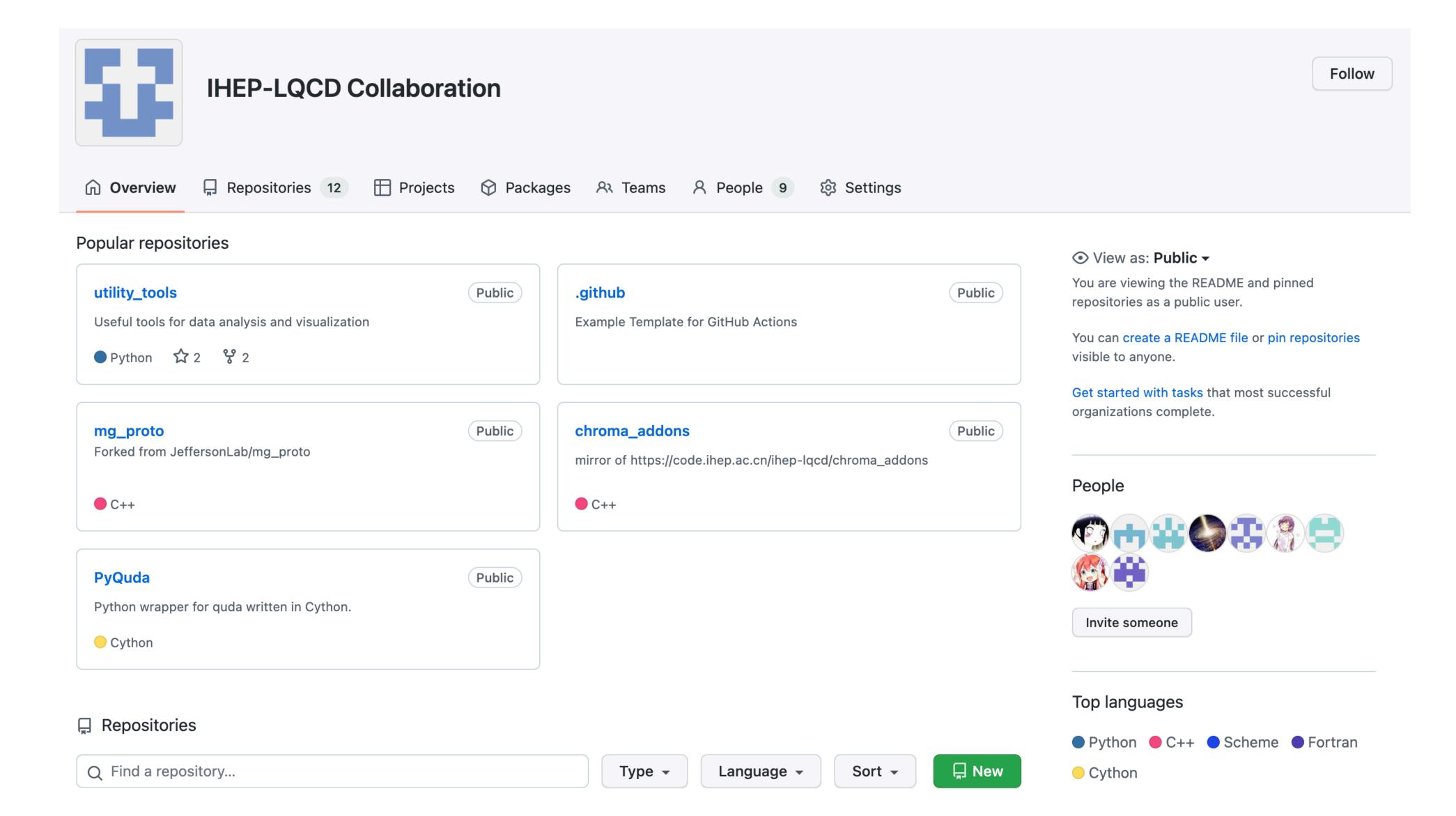
```
CC = gcc
     CFLAGS = -03 - fopenmp
     objects = hello_world.o
4
     all: hello_world
6
     %.0 : %.C
          $(CC) -c -$(CFLAGS) -$< -o -$@
8
9
10
     hello_world: $(objects)
          $(CC) $(CFLAGS) $^--o $@
11
12
13
      .PHONY: all
14
     clean:
15
          rm -f *.o hello_world
```

```
acinclude.m4
                  lib
AUTHORS
                  LICENSE
autogen.sh
                  mainprogs
ChangeLog
                  Makefile.am
chroma-config.in
                  metadata.yml
config
                  NEWS
configure.ac
                  other_libs
COPYING
                  README
                  scripts
docs
INSTALL
                  tests
```

GNU Autotools

```
Build: autoreconf
./configure
make && make install
```


CMake

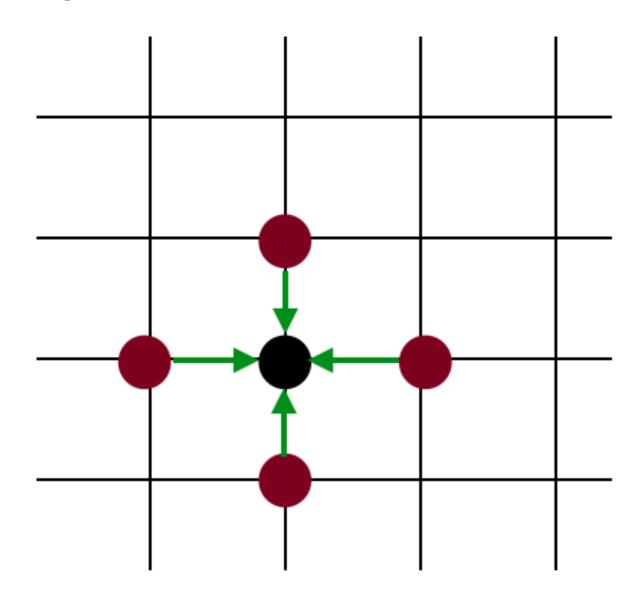

```
Build: mkdir build && cd build cmake ..

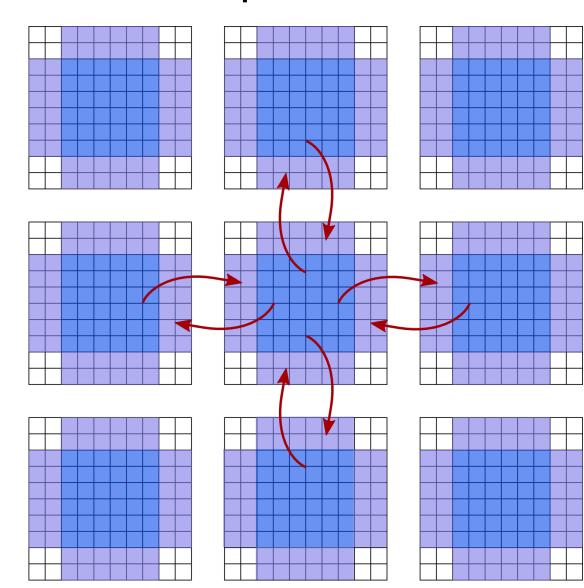
make && make install
```

Makefile

Build: make

Version control and collaborative development




Case study with HPC in high energy physics

- Dirac equation on the lattice is to solve the large sparse linear system Mx = b
- $M = m + 4 \frac{1}{2}D$, D is the Dslash operation

$$D_{x,y} = \sum_{\mu=1}^{4} U_{\mu}(x)(1-\gamma_{\mu})\delta_{x+\hat{\mu},y} + U_{\mu}(x-\hat{\mu})^{\dagger}(1+\gamma_{\mu})\delta_{x-\hat{\mu},y}$$

- 4 dimensional 8(9) point stencil operator
- Nearest neighbor communication, very suitable for parallel computing

Case study with HPC in high energy physics

Solve Mx = b with iterative method

Algorithm 1 Solve Mx = b with BiCGStab method

1:
$$r_0 = b - Mx_0$$

 $\longrightarrow x_0$ is initial guess

2:
$$p_0 = r_0$$

3: while
$$||r_j|| > \epsilon$$
 do

 $\longrightarrow \epsilon$ is the convergence tolerance error

4:
$$\alpha_j = \frac{(r_j, r_0^*)}{(Mp_j, r_0^*)}$$

5:
$$s_j = r_j - \alpha_j M p_j$$

6:
$$\omega_j = \frac{(Ms_j, s_j)}{(Ms_j, Ms_j)}$$

7:
$$x_{j+1} = x_j + \alpha_j p_j + \omega_j s_j$$

8:
$$r_{j+1} = s_j - \omega_j M s_j$$

9:
$$\beta_j = \frac{\alpha_j}{\omega_j} \times \frac{(r_{j+1}, r_0^*)}{(r_j, r_0^*)}$$

10:
$$p_{j+1} = r_{j+1} + \beta_j (p_j - \omega_j M p_j)$$

- ullet Matrix vector multiplications $\mathit{Mp_j}$ etc. are nearest neighbor commutation (MPI_Send/Recv)
- (r_j, r_0^*) etc. are complex inner product (MPI_Allreduce)

11: end while

Summary and tips

 Covered basics of high performance computing programming model and tools widely used in high energy physics

• Tips:

- Select the right programming model and tools before writing the code
- Correctness is the top priority, NOT performance at the beginning of the software development
- Use well established and tested libraries, do NOT reinvent the wheels unless you know what you are doing
- Use version control system such as git for code development, use github or gitlab for collaborative development