Precision Predictions using ete Annihilation and Tau Data

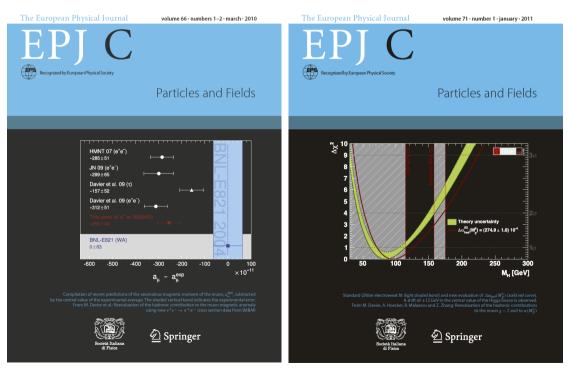
Project activity report 2009-2010

MO Xiaohu

WANG Ping

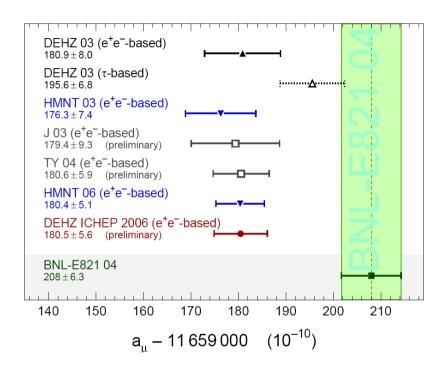
中国科学院高能物程研究所 YUAN Changzheng

Michel DAVIER
Bogdan MALAESCU
ZHANG Zhiqing


WANG Liangliang (co-PhD thesis defended 2009)

[+A. Höcker (CERN), G. Lopez Castro, G. Toledo (Mexico)]

Main Results Published

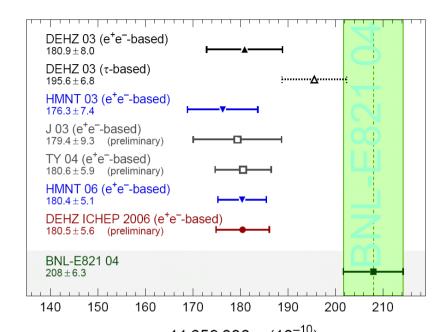

- 1. The discrepancy between tau and e⁺e⁻ spectral functions revisited and the consequences for the muon magnetic anomaly,

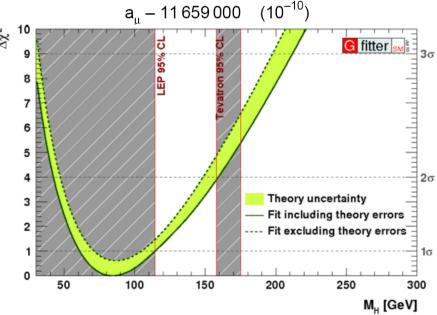
 Eur. Phys. J. C66 (2010) 127, arXiv:0906.5443 [hep-ph].
- 2. Reevaluation of the hadronic contribution to the muon magnetic anomaly using new $e^+e^- \rightarrow \pi^+\pi^-$ cross section data from Babar, Eur. Phys. J. C66 (2010) 1, arXiv:0908.4300 [hep-ph].
- Reevaluation of the hadronic contributions to the muon g-2 and α(M_Z),
 Eur. Phys. J. C71 (2011) 1, arXiv:1010.4180 [hep-ph].

Motivations

- Muon magnetic anomaly a_{μ} :
 - one of the most precisely measured and prediction quantities in particle physics
 - sensitive to QED, strong and weak sectors of SM
 - data/prediction discrepancy
 - → hint for new physics
 - discrepancy ee & τ -based predictions

Motivations

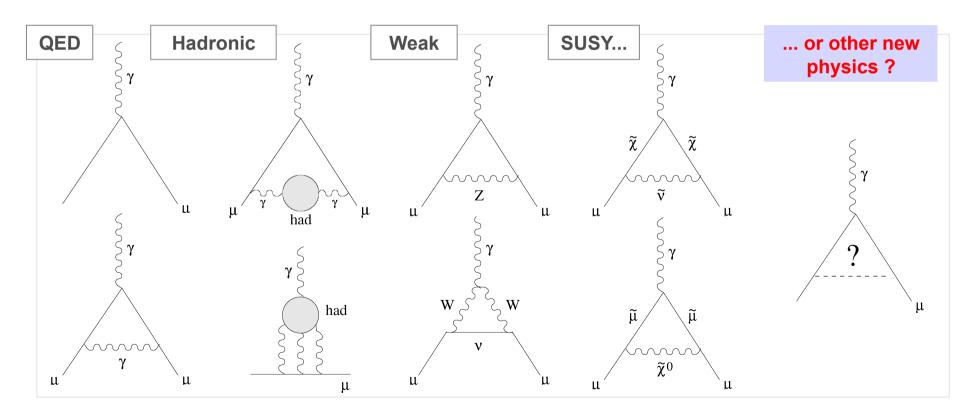

- Muon magnetic anomaly a_{μ} :


- one of the most precisely measured and prediction quantities in particle physics
- sensitive to QED, strong and weak sectors of SM
- data/prediction discrepancy
 - → hint for new physics
- discrepancy ee & τ -based predictions
- Running fine-structure constant $\alpha(M_Z)$:

$$\alpha(M_Z) = \frac{\alpha}{1 - \Delta \alpha(M_Z)}$$

$$\Delta \alpha(M_Z) = \Delta \alpha_{\text{leptonic}}(M_Z) + \Delta \alpha_{\text{had}}(M_Z)$$

- one of limiting factors for global fit to EW precision data
- an example constraint is on Higgs mass



Muon Magnetic Moment Anomaly

$$\vec{\mu} = g \frac{\pm e}{2m} \vec{s}$$
 $g = 2 + \cdots$ \Rightarrow Magnetic Moment anomaly: $a_l = \frac{g-2}{2}$

 a_e is better measured but a_μ is more sensitive to new physics effects by $(m_\mu/m_e)^2 \sim 43000$)

$$a_{\mu}^{\text{th}} = a_{\mu}^{\text{SM}} + a_{\mu}^{\text{non-SM}}, \qquad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{Weak}}$$

Experimental progress on g-2

Miller, de Rafael, Lee Roberts, 2006

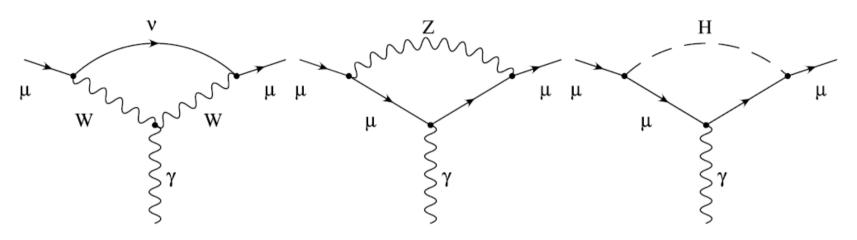
Experiment	Beam	Measurement	$\delta a_{\mu}/a_{\mu}$	Required th. terms
Columbia-Nevis (57)	μ+	$g=2.00\pm0.10$		g=2
Columbia-Nevis (59)	μ^{+}	0.001 13(+16)(-12)	12.4%	$lpha/\pi$
CERN 1 (61)	μ^+	0.001 145(22)	1.9%	$lpha/\pi$
CERN 1 (62)	μ+	0.001 162(5)	0.43%	$(\alpha/\pi)^2$
CERN 2 (68)	μ^{+}	0.001 166 16(31)	265 ppm	$(\alpha/\pi)^3$
CERN 3 (75)	μ^{\pm}	0.001 165 895(27)	23 ppm	$(\alpha/\pi)^3$ + had
CERN 3 (79)	μ^{\pm}	0.001 165 911(11)	7.3 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (00)	μ^+	0.001 165 919 1(59)	5 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (01)	μ^+	0.001 165 920 2(16)	1.3 ppm	$(\alpha/\pi)^4$ + had + weak
BNL E821 (02)	μ^+	0.001 165 920 3(8)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?
BNL E821 (04)	μ-	0.001 165 921 4(8)(3)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak + ?

→ Current world average: $a_{\mu}^{\text{exp}}=11659208.9 \pm 6.3 \times 10^{-10}$

Dominated by by BNL-E821: PRD73, 072003 (2006)

SM Predictions: $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{Weak}}$

$$a_{\mu}^{\rm QED} \cdot 10^{10} = \Sigma C_i(\frac{\alpha}{\pi})^i = 11614097.3 \; (\text{1-loop}) \quad 1 \; \text{diagram} \\ + \quad 41321.8 \; (\text{2-loop}) \quad 9 \\ + \quad 3014.2 \; (\text{3-loop}) \quad > 100 \\ + \quad 38.1 \; (\text{4-loop}) \quad > 1000 \\ + \quad 0.4 \; (\text{5-loop}) \quad > 20000$$


$$a_{\mu}^{\text{QED}} = (11658471.809 \pm 0.015_{5^{th}order \oplus \delta\alpha}) \times 10^{-10}$$

[PDG'10] i.e. >99%5M

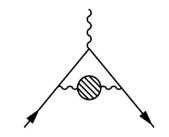
- α^3 terms known analytically (S. Laporta, E. Remiddi, 93)
- α^4 terms known numerically (T. Kinoshita et al., 03-08)
- α^5 terms estimated (T. Kinoshita and M. Nio, 06, A.L. Kataev, 06, K. Chetyrkin et al., 08) Using latest measurement of α^{-1} = 137.035999084(51) (Hanneke, Fogwell, Gabrielse, 08)

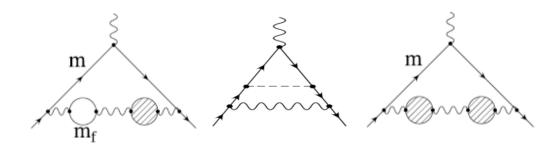
SM Predictions: $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{Weak}}$

One-loop diagrams:

Order	a_{μ}^{Weak} (10 ⁻¹⁰)	Ref
1 loop	19.5	Jackiw, Weinberg, 72 Altarelli et al., 72 Bars, Yoshimura, 72
+ 2 loop	15.4±0.1 _{had} ±0.2 _{Mh}	Czarnecki et al., 03 Heinemeyer et al., 04 Gribouk, Czarnecki, 05

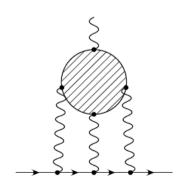
SM Predictions: $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{Weak}}$

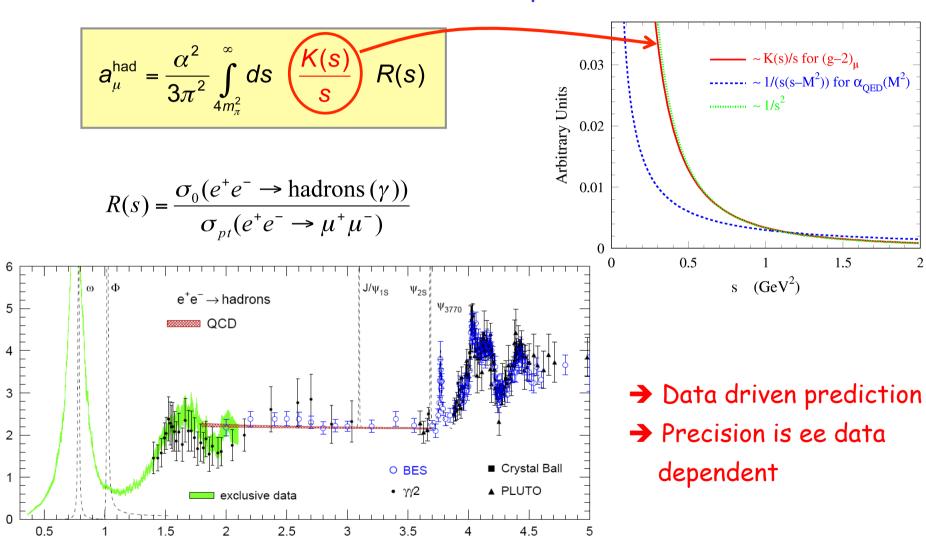

$$a_{\mu}^{\text{had}} = a_{\mu}^{\text{had,LO}} + a_{\mu}^{\text{had,HO}} + a_{\mu}^{\text{had,LBL}}$$


Leading-Order Higher-Order Light-By-Light

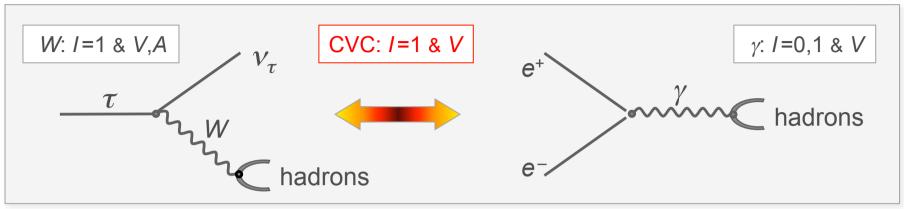
$$a_u^{had,LO} \sim (700 \pm 5) \times 10^{-10}$$

 \rightarrow dominant uncertainty (both e⁺e⁻ and τ based)


$$a_u^{had,HO} = (-9.8 \pm 0.1) \times 10^{-10}$$


$$a_u^{had,LBL} \sim (12.0 \pm 3.5) \times 10^{-10}$$

→ 2nd leading uncertainty


How is the LO Hadronic Contribution Calculated?

Could not predict from 1st principle but can be rigorously calculated using ee annihilation data via Dispersion Relation

Connect τ and e⁺e⁻ Data through CVC - SU(2)

R. Alemany, M. Davier, A. Hoecker, Eur. Phys. J. C 2, 123 (1998)

Hadronic physics factorizes in Spectral Functions:

Isospin symmetry connects I=1 e^+e^- cross section to vector τ spectral functions:

$$\sigma^{(l=1)}\left[e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\right] = \frac{4\pi\alpha^{2}}{s}\upsilon\left[\tau^{-} \rightarrow \pi^{-}\pi^{0}\upsilon_{\tau}\right]$$

fundamental ingredient relating long distance (resonances) to short distance description (QCD)

$$\upsilon\left[\tau^{-} \to \pi^{-}\pi^{0}\nu_{\tau}\right] \propto \frac{\mathsf{BR}\left[\tau^{-} \to \pi^{-}\pi^{0}\nu_{\tau}\right]}{\mathsf{BR}\left[\tau^{-} \to e^{-}\overline{\nu}_{e}\nu_{\tau}\right]} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \frac{m_{\tau}^{2}}{\left(1-s/m_{\tau}^{2}\right)^{2}\left(1+s/m_{\tau}^{2}\right)}$$

branching fractions

mass spectrum kinematic factor (PS)

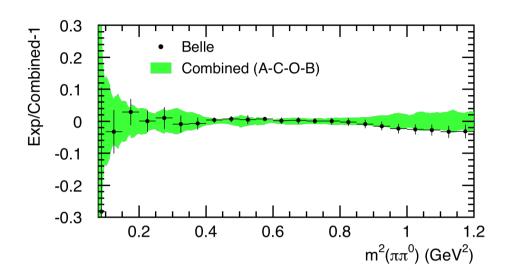
What's new for Tau based prediction?

Revisited isospin corrections Eur. Phys. J. C66 (2010) 127, arXiv:0906.5443 [hep-ph]

C	$\Delta a_{\mu}^{\rm had, LO}[\pi \pi, \tau] \ (10^{-10})$				
Source	GS model	KS model			
S_{EW}	-12.21 ± 0.15				
$G_{\rm EM}$	-1.92 ± 0.90				
FSR	$+4.67 \pm 0.47$				
ρ – ω interference	$+2.80 \pm 0.19$	$+2.80 \pm 0.15$			
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on σ	-7.88				
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on Γ_{ρ}	+4.09	+4.02			
$m_{\rho^{\pm}} - m_{\rho_{\text{bare}}^0}$	$0.20^{+0.27}_{-0.19}$	$0.11^{+0.19}_{-0.11}$			
$\pi\pi\gamma$, electrom. decays	-5.91 ± 0.59	-6.39 ± 0.64			
	-16.07 ± 1.22	-16.70 ± 1.23			
Total	-16.07	1.85			

What's new for Tau based prediction?

Revisited isospin corrections Eur. Phys. J. C66 (2010) 127, arXiv:0906.5443 [hep-ph]

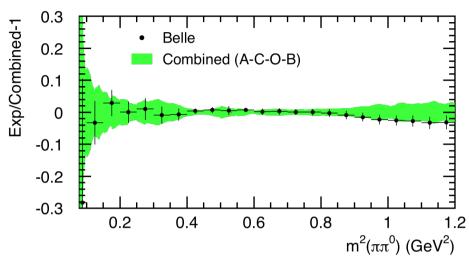

Source	·	$[\pi, \tau] (10^{-10})$ KS model	Old (DEHZ 03)
S_{EW}	-12.21 ± 0.15		-12.1 ± 0.3
G_{EM}	-1.92	-1.0	
FSR	+4.67		
ρ – ω interference	$+2.80 \pm 0.19$	$+2.80 \pm 0.15$	$+3.5 \pm 0.6$
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on σ	-7	-7.0	
$m_{\pi^{\pm}} - m_{\pi^{0}}$ effect on Γ_{ρ}	+4.09	+4.02	+4.2
$m_{\rho^{\pm}} - m_{\rho_{\text{bare}}^0}$	$0.20^{+0.27}_{-0.19}$	$0.11^{+0.19}_{-0.11}$	0 ± 2.0
$\pi\pi\gamma$, electrom. decays	-5.91 ± 0.59	-6.39 ± 0.64	-1.4 ± 1.2
Total		-16.70 ± 1.23 2 ± 1.85	-13.8 ± 2.4 (w/o including FSR)

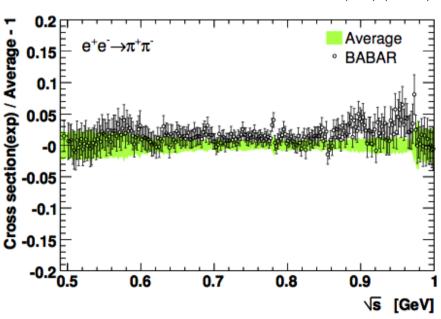
Net change with respect to the previous corrections: -6.9 (dominated by em decays)

Other New Items

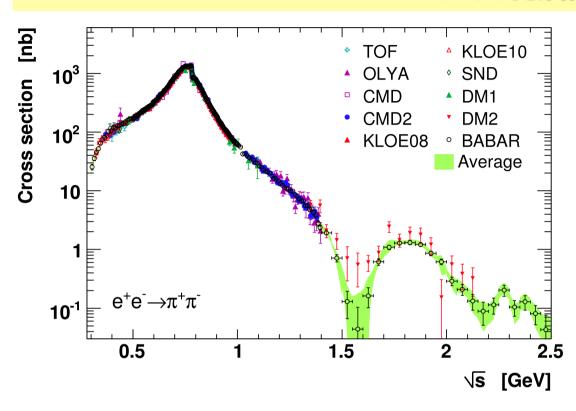
☐ New tau data from Belle

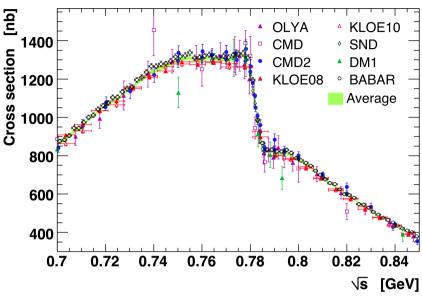
$$\tau \rightarrow h\pi^0 \nu_{\tau}$$
 (5.4×10⁶ Belle \leftrightarrow 81×10³ ALEPH)

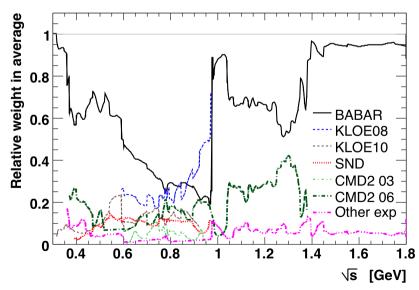


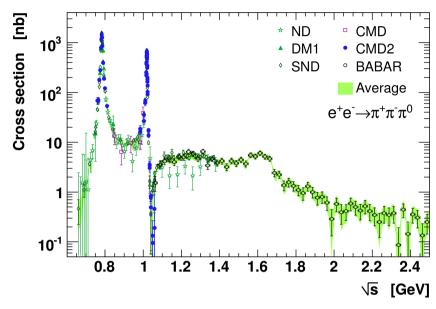

Other New Items

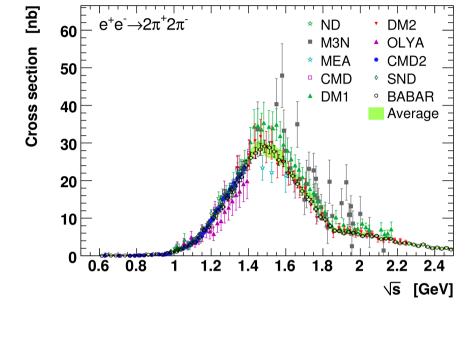
☐ New tau data from Belle

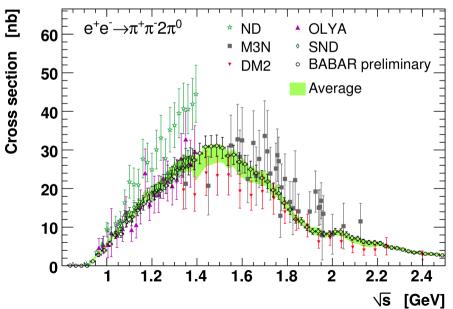

$$\tau \rightarrow h\pi^0 v_{\tau}$$
 (5.4×10⁶ Belle \leftrightarrow 81×10³ ALEPH)


- □ New e+e- annihilation data
 - $\pi^{+}\pi^{-}$
 - $-\pi^{+}\pi^{-}\pi^{0}$, $2\pi^{+}2\pi^{-}$, $\pi^{+}\pi^{-}2\pi^{0}$
 - other multi-hadron channel
- ☐ Include unmeasured channels through isospin relations
 - 5, 6π channels
 - $K\overline{K}[n\pi]$ channels
- □ New HVPTools package
 - data combination
 - data interpolation
 - handling inter-exp, inter-channel correlations

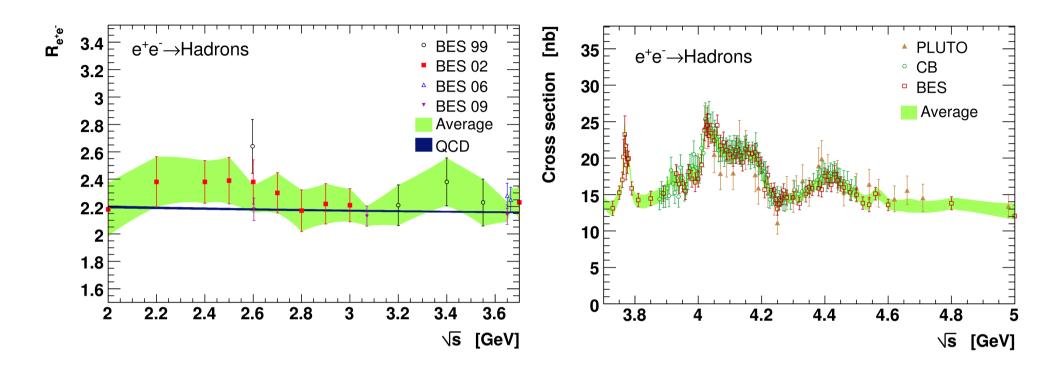

2π Channel






- BABAR dominates over almost all energy region
- Discrepancy between BABAR and KLOE

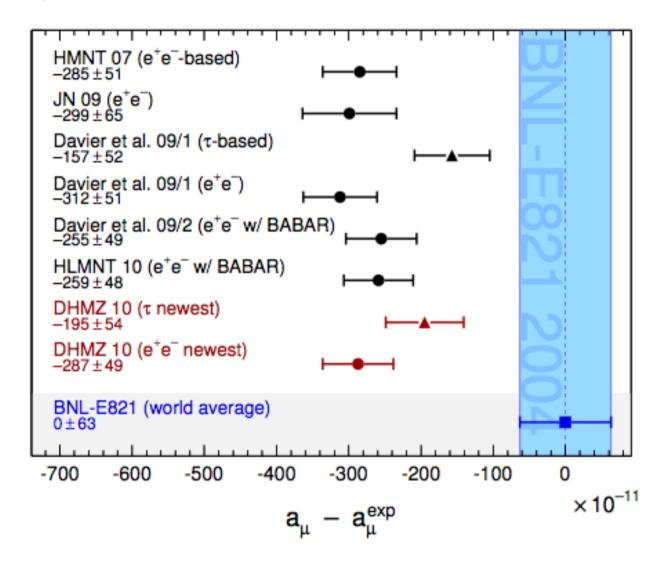
$\pi^+\pi^-\pi^0$, $2\pi^+2\pi^-$, $\pi^+\pi^-2\pi^0$ Channels



Again BABAR dominates over other experiments though data for $\pi^+\pi^-2\pi^0$ channel still preliminary

Other Multi-hadron Channels

Regions below and above DDbar



pQCD calculation in good agreement with the direct measurements in non-resonance regions and are applied down to 1.8GeV

BES data precision steadily improving

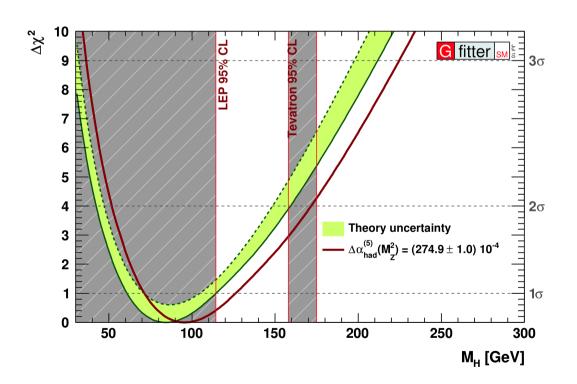
$$R_{\rm QCD} \ [1.8 - 3.7 \ {
m GeV}]_{uds}$$
 $R_{\rm QCD} \ [5.0 - 9.3 \ {
m GeV}]_{udsc}$
 $R_{\rm QCD} \ [9.3 - 12.0 \ {
m GeV}]_{udscb}$
 $R_{\rm QCD} \ [12.0 - 40.0 \ {
m GeV}]_{udscb}$
 $R_{\rm QCD} \ [> 40.0 \ {
m GeV}]_{udscb}$
 $R_{\rm QCD} \ [> 40.0 \ {
m GeV}]_t$

Last a, Predictions Comparing Measurement

Measurement/predictions discrepancy:

 e^+e^- : 3.6 σ , τ : 2.4 σ

New Results on $\alpha(M_Z)$ & Constraint on M_H


$$\Delta\alpha_{\text{had}}(M_Z) = 274.21 \pm 0.17_{\text{stat}} \pm 0.78_{\text{uncor-syst}} \pm 0.41_{\text{cor-syst}} \pm 0.18_{\psi} \pm 0.52_{\text{QCD}} (\times 10^{-4})$$

$$= 274.21 \pm 1.04_{\text{total}} (\times 10^{-4})$$

$$\Rightarrow \Delta\alpha_{\text{had}}^{(5)}(M_Z) = 274.9 \pm 1.0 (\times 10^{-4}), \ \alpha^{-1}(M_Z) = 128.962 \pm 0.015$$

To be compared with

HMNT (06): $\Delta\alpha_{had}^{(5)}(M_Z)$ = 276.8 ± 2.2 (x10⁻⁴), $\alpha^{-1}(M_Z)$ = 128.937 ± 0.030

The fitted (Gfitter) Higgs mass shifted from 84⁺³⁰₋₂₃ GeV to 96⁺³¹₋₂₄ GeV

The new upper limits are: 170 GeV @90% CL 201 GeV @95% CL

Summary and Prospects

- Active & fruitful collaboration
- Providing the most precise predictions on a_{μ} and $\alpha(M_Z)$
 - \rightarrow Discrepancy measurement/prediction on a_{μ} could be a 1st hint of new physics
 - \rightarrow New $\alpha(M_Z)$ favors a lager Higgs mass in better agreement with direct LEP search
- Making connection with direct searches at LHC
 - → exciting prospect
- Looking forward to new e+e- and τ data from BES3
 - → wish to continue the project

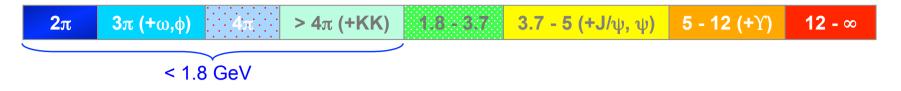
New Project: Moving from BNL to Fermilab

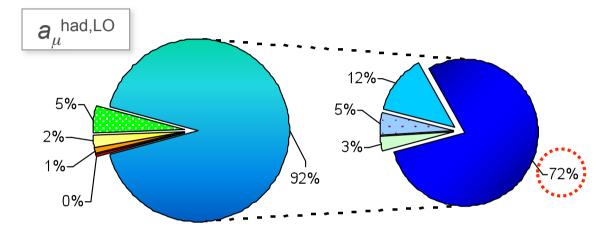
K. Lynch, tau workshop 2008

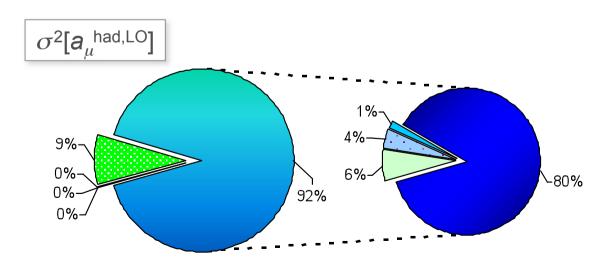
Systematic uncertainty (ppm)	1998	1999	2000	2001	New Goal
Magnetic field – ω _p	0.5	0.4	0.24	0.17	0.07
Anomalous precession – ω _a	0.8	0.3	0.31	0.21	0.07

Combined syst: 0.28ppm

New syst: 0.10ppm


Combined stat: 0.46ppm


Statistical uncertainty (ppm)	4.9	1.3	0.62	0.66	0.10
Total Uncertainty (ppm)	5.0	1.3	0.73	0.72	0.14


Combined total: 0.54ppm

 \rightarrow To improve δa_{μ} by a factor of 4 from 6.5×10^{-10} to 1.6×10^{-10}

Relative Contribution of Input Data vs Energy

- \rightarrow 2 π channel contributes more than 70%!
- → The e+e- data precision (was) limited
- → Use (complement with) tau data

[Alemany-Davier-Höcker, EPJ C2(98)123]

Isospin Breaking (IB) Corrections Revisited

Corrections for SU(2) breaking applied to τ data for dominant $\pi^-\pi^+$ contribution:

- Electroweak radiative corrections:
 - \blacktriangleright dominant contribution from short distance correction $S_{\rm EW}$
 - subleading corrections (small)
 - ▶ long distance radiative correction $G_{EM}(s)$

Marciano-Sirlin' 88

Braaten-Li' 90

Cirigliano-Ecker-Neufeld' 02 Lopez Castro et al.' 06

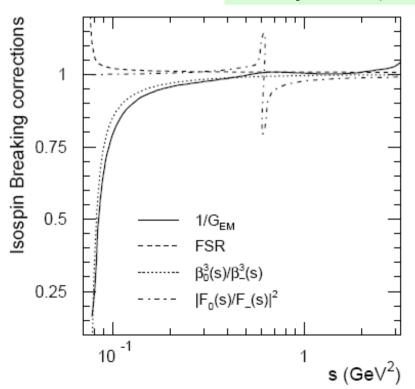
Charged/neutral mass splitting:

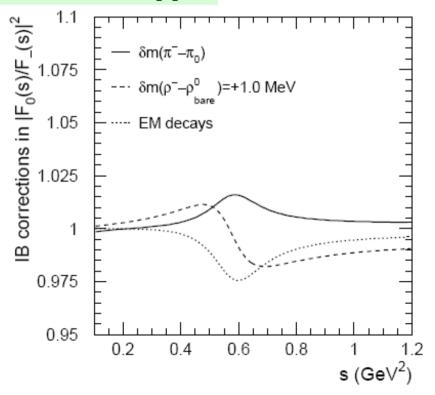
Alemany-Davier-Höcker' 97, Czyż-Kühn' 01

- $m_{\pi^-} \neq m_{\pi^0}$ leads to phase space (cross sec.) and width (FF) corrections
- ▶ ρ - ω mixing (EM $\omega \to \pi^-\pi^+$ decay) corrected using FF model
- ▶ m_{ρ} = $m_{\rho 0}$ and Γ_{ρ} = $\Gamma_{\rho 0}$

Flores-Baez-Lopez Castro' 08 Davier et al.'09

- Electromagnetic decays: $\rho \to \pi \pi \gamma$, $\rho \to \pi \gamma$, $\rho \to \eta \gamma$, $\rho \to t'/$
- Quark mass difference $m_u \neq m_d$ (negligible)


Isospin Breaking (IB) Corrections Revisited


$$\Delta^{\mathrm{IB}} a_{\mu}^{\mathrm{LO,had}}[\pi \pi, \tau] = \frac{\alpha^2 m_{\tau}^2}{6 \, |V_{ud}|^2 \pi^2} \, \frac{\mathcal{B}_{\pi^- \pi^0}}{\mathcal{B}_{e^- \overline{\nu}_e \nu_{\tau}}} \, \int_{4m_{\pi}^2}^{m_{\tau}^2} ds \, \frac{K(s)}{s} \, \frac{dN_X}{N_X \, ds} \, \left(1 - \frac{s}{m_{\tau}^2}\right)^{-2} \left(1 + \frac{2s}{m_{\tau}^2}\right)^{-1} \, \left[\frac{R_{\mathrm{IB}}(s)}{S_{\mathrm{EW}}} - 1\right]$$

$$S_{EW} = 1.0235 \pm 0.0003$$

$$R_{\rm IB}(s) = rac{{
m FSR}(s)}{G_{\rm EM}(s)} rac{eta_0^3(s)}{eta_-^3(s)} \left| rac{F_0(s)}{F_-(s)}
ight|^2$$

Eur. Phys. J. C66 (2010) 127, arXiv:0906.5443 [hep-ph]

