

BTAG Commissioning in ATLAS Experiment in 2010

Bai Yu (CPPM and IHEP), Laurent Vacavant(CPPM), Nicolas Bousson(CPPM), Shan Lianyou(IHEP), Jin Shan(IHEP), Emmanuel Monnier(CPPM) April 7, 2011 FCPPL Jinan

Outline

- Introduction to BTag Commissioning
- Status of Commission from 2010 Data
- Performance Study
- Summary and Prospect

Introduction

- What is BTag : to select b jet out from light(from u,d,s quark or gluon) or charm jet
- Why Btag : Important to a lot of physics analysis channels
 - B jet as signal : any channel include top production
 - B jet as background : .i.e WH(H->WW) need b veto
- How to do Btag : B quark is heavy(~5GeV) and decay slowly (cτ~1mm), that allows
 - Btag via secondary vertex : SVO(decay length significance),
 - Track Imapct parameter information : IP2D, TrackCounting, JetProb
 - Advanced Tagger, combination of jet variables: JetFitter(NN), SV1+IP3D...
- Btag Commssioning:
 - Need to understand the performance of the taggers
 - The performance of taggers may be affected by multiple facts : condition, trigger configuration, luminosity .e.t.c.
 - Also do performance study
 - To improve the performance
 - To make our algorithm fit the situation we will meet in the future(Pile up .e.g)
 - All these work are in progress

BTagging Commissioning Status(contributed from Nicolas Bousson)

Tagging Weights

Number of jets

10

IP3D + SV1 tagger weight :data period A-D

SV0 tagger weight : data period A-D

10 10 102 10 ata/MC 1.4 0.8 IP2D weight IP2D tagger weight : data period A-D Entries 5708811 10 Mean RMS Number of jets 106 10

Jet Prob Tagger : data period A-D

MC fit data well in tag weight

Entries 5708811 Mean RMS

-1.05 1.381

BTagging Commissioning Status: Tagging Rate

- MC Tag Rate fits Data Well
- The results for latest runs are also in progress

Performance Study: Secondary Vertex Reconstruction

- SV taggers performance are strongly depend on secondary vertex reconstruction
- To improve the sv tagger performance by tuning the secondary vertex finder
- The result may applied in release 17
- Many thanks to Vadim Kostyukhin

Secondary Vertex Reconstruction

Secondary Vertex Reconstruction Performance Comparison(1)

Significantly Higher Rejection, but lower sv reconstruction efficiency(make performance worse in high efficiency region). By tuning the cut in -00-01-42, we improve the performance in high efficiency region. Meanwhile the AntiFake2TrkVrt cut may be too tight.

Secondary Vertex Reconstruction Performance Comparison(2)

Conclusion from SV Tuning

- A set of secondary vertex cut configuration (will be applied in future release)
 - Moderate antifake 2trk vertex cut
 - No Shared track rejection
 - Tunned value of track significance and sv chi2 cut
 - Beam pipe rejection doesn't have significant effect on the performance

Pileup Cuts Performance Study (in progressing)

- More and more Pile-ups (6 currently, will up to 13 later this year)
- We want robust cuts against pile up
- So:
 - Data Set: Pile up QCD dijet sample with bunch train
 - Do the retagging (only IP2D are recalibrated now, unrecalibrated result was in back up) with different pile up cut configuration
 - Compare the performance between different pile up cuts on track selection

Cuts on Tracks against PU

- Hits Cuts
 - Default(no pile up consideration) Pile Up Hits Cuts
 - nPix Hit>=2
 nSi Hit>=7
 nSi Hit>=9
- d0%z0 AntiPU Cuts (inspired from IBL Study by Laurent and Nicolas)
 - If track DOSig<3.0 and trackZOSig>3.8, reject this track

PU Cuts Study Results : Relative Rejection Plots

IP2D Relative Rejection Plots

 CASE IV ip2 rej/rejmax .w.r.t efficiency J2 Entrie Mean x Mean y 0.6002 RMS x 0.173 CASE IV – PU hits cuts 0.98 CASE II withd0%z0 0.97 CASEI 0.96 0.95 CASE III CASE I 0.94 0.3 0.4 0.6 0.7 0.8 0.9 ip2 rej/rejmax .w.r.t efficiency 100000 P 1307 D0%z0 PU Cuts 0.99 CASE IV 0.99 ω CASE II 0.98 CASEI 0.98 0.97 CASE I 0.97 PU Hits Cut 0.96 0.96 CASE 0.95 0.6 0.8 CASE I ip2 rej/rejmax .w.r.t efficiency Mean y 0.8998 1.990 0.1731 1.110 CASE IV No pile up 0.99 0.99 CASE II consideration 0.98 J4 CASE I 0.98 0.97 CASEI 0.3 0.5 0.6 0.8 0.9 0.4

Rejection is a function of efficiency : rej= rej(eff), and relative rejection is defined as: rej(eff)/(Maximum(rej_case_I(eff),rej_case_II(eff),rej_case_III(eff),rej_case_IV(eff))) PU Cuts Study Conclusion

- For IP2D antiPU improve the performance in some region
- These cuts have been put in rel 16.6.x.y but not applied in dataset production yet
- We need to do that for more taggers (so far only IP2D are recalibrated)

Summary and Prospect

- The ATLAS Btag Commissioning work is progressing and encouraging in 2010, although it is really hard work
- In 2011 the we will meet hasher conditions but we are confident to continue making progress and more advanced tagger would be used soon

Back Up Data Set

- Data :2010 runs Period A-I (35pb⁻¹) by 2010 autumn reprocessing
 - Period A-D with L1Calo Stream
 - Period E-I with JetTauMissingEt Stream
- MC , QCD Dijet (Pt_true : 8GeV-1120GeV)
 - No Pile up sample
 - Pile up sample (with bunch train pile up)
 - Also use ttbar sample in some performance study

Back_up

Secondary Vertex Reconstruction Efficiency

	SV0		SV1	
	B Efficiency	Light Rejection	B Efficiency	Light Rejection
Old Version All Jet(01-38)	55.1	60.7%	30.4	67.8%
Old Version High Pt(38)	17.5	71.7%	10.2	75.2%
Default All Jets(01-46)	62.5	58.8%	39.1	65.6%
Tunned All Jets(01-46)	42.2	61.3%	25.9	68.4%
No SharedHits All Jets(46)	53.9	60.3%	35.8	67.2%
No BeampipRej(01-46)	61.5	58.8%	38.9	66.0%
Default HighPt Jets(46)	23.8∓0.8	(65.8∓0.3)%	14.4∓0.4	(70.3∓0.3)%
Tunned Highpt Jets(46)	16.6∓0.6	(70.8∓0.5)%	10.6∓0.3	(74.9∓0.5)%
No SharedHits HighPt(46)	19.1∓0.5	(69.7∓0.3)%	12.6∓0.3	(73.3∓0.3)%
No BeampipeRej HighPt(46)	23.5∓0.6	(65.7∓0.3)%	14.1∓0.3	(70.1∓0.3)%

Backup

Unrecalibrated Results : Relative Rejection Plots

- CASE I
 - Default(no pile up consideration)
- CASE II
 - Hits Cut
- CASE III
 - D0%z0 PU Cuts
- CASE IV
 - PU cuts
 withd0%z0 PU
 cuts

Rejection is a function of efficiency : rej= rej(eff), and relative rejection is defined as: rej(eff)/(Maximum(rej_case_I(eff),rej_case_II(eff),rej_case_III(eff),rej_case_IV(eff)))