Xiaoming Zhang for the ALICE Collaboration

Institute of Particle Physics, Huazhong Normal University, Wuhan, P. R. China

Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand, France

Key Lab. of Quark & Lepton Physics, Ministry of Education, P. R. China

4th France China Particle Physics Laboratory Workshop, Jinan, China, April 7-9, 2011

- Heavy Flavour Physics with ALICE at the LHC
- 2 Measurement of $\mu^{\pm} \leftarrow HF$ in *pp* data 2 $\sqrt{s} = 7$ TeV: Preliminary Results
- Summary of My Activities
- Conclusion & Outlook

< □ > < ^[] >

Study of the Quark Gluon Plasma at LHC Energies

- Study of the Quark Gluon Plasma (QGP) should help understanding the properties of the hadronic matter under extreme conditions of temperature and density.
- heavy ion collisions are the only way to study the QGP properties in laboratory.
- Super Proton Synchroton (SPS), CERN (1986~2003), Pb-Pb collisions+other system;
- Relativistic Heavy Ion Collider (RHIC), BNL (2000~20xx), Au-Au collisions+other system;
- Large Hadron Collider (LHC), CERN (2010~20xx), Pb-Pb collisions+other system.

center coll.	$\sqrt{s_{ m NN}}$ [GeV]	$\frac{dN}{dy} _{y=0}$	τ^{0}_{QCD} [fm/c]	T _{QGP} /T _c	$\epsilon ~[{\rm GeV/fm^3}]$	$\tau_{QGP} [\text{fm/c}]$	$\tau_{f} \; [fm/c]$	V _f [fm ³]
SPS	6.3~17.3	500	1	1.1	3	≤2	~ 10	$\sim 10^3$
RHIC	62~200	850	0.2	1.9	5	2~4	$20 \sim 30$	$\sim 10^4$
LHC	$2760 \sim \cdots$	1600~2000(?)	0.1	3~4.2	15~60	≥10	30~40	10 ⁵

The LHC, with $\sqrt{s_{\rm NN}} = 2.76$ TeV (nearly 14 times larger than that reached at RHIC), opened a new era for studying the properties of strongly interacting matter under extreme thermodynamical conditions!

X. M. Zhang (LPC, IOPP & QLPL)

Unravel NLO Processes

Large theoretical uncertainties on cross section predictions;

similar uncertainties expected at 7 TeV (M. Cacciari).

References for Normalization

- $\sigma^{D/B}$ in *pA* and *AA* collisions;
- $\sigma^{J/\Psi, \Upsilon}$ in *pp*, *pA* and *AA*, production, absorption, suppression or recombination? obtain the information on the thermodynamical state of QCD medium: E_c, T_c .
- ratio of $N^{J/\Psi \leftarrow B}/N^{\mathrm{direct}J/\Psi}$ (10 \sim 20%? in 4 π).

くぼう くほう くほう

HF in *pA* Collisions

- initial state radiations;
- shadowing & anti-shadowing;
- k_t broadening of partons; ۲
- color glass condensate (CGC).

Tomography of QCD Medium in AA Collisions:

If produced at the beginning of interaction: $\tau \sim 1/m_{Q\bar{Q}} \lesssim 0.1$ fm/c;

open heavy flavour quenching in QCD medium:

- $R_{AA}(p_t, \eta) = \frac{1}{\langle N_{COII} \rangle} \times \frac{d^2 N_{AA}/dp_t d\eta}{d^2 N_{DO}/dp_t d\eta}$, medium induced gluon radiation,
- $\frac{R_{\Delta(p_t)}^D}{R_{\Delta(p_t)}^h}$, color charge effect of parton energy loss,
- $\frac{\mathcal{R}_{AA}^{A}(p_t)}{\mathcal{R}_{AA}^{B}(p_t)}$, mass dependence of parton energy loss in high p_t region; $\frac{\mathcal{R}_{AA}^{B}(p_t)}{\mathcal{R}_{AA}^{D}(p_t)}$, isolate mass dependence.

Heavy Ion Physics Program with ALICE at the LHC

- There are 6 experiments at LHC: ATLAS, CMS, LHCb, LHCf, TOTEM & ALICE;
- ALICE (A Large Ion Collider Experiment) is dedicated to heavy ion collisions at the LHC.

Main Physics Topics at ALICE

- global characteristics of events mult & η dist;
- collective effects elliptic flow;
- fluctuations & critical behaviour E-by-E particle composition and spectra;
- geometry of the emitting source HBT, zero degree energy flow;
- chiral symmetry restoration neutral to charged ratios, resonance decays;
- deconfinement charmonium and bottomonium;
- degree of freedom vs. T hadron ratios & spectra, direct photons, dilepton continuum;
- energy loss of partons in QGP jet quenching, high p_t spectra, open charm & bottom;

Heavy quarks provide a rich physics program at the LHC!

X. M. Zhang (LPC, IOPP & QLPL)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

X. M. Zhang (LPC, IOPP & QLPL)

Heavy Flavour Phys. @ LHC/ALICE

The ALICE muon Spectrometer

- Front Absorber: reduces hadron yield & decreases decay μ yield by limiting the free path of primary K/π .
- Or Magnet Dipole: 3 Tm integrated field perpendicular to the beam axis.
- Tracking System:
 - multi-wire CPC with 1.1 M readout channels,
 - position resolution $\leq 100 \ \mu m \Rightarrow \sigma_M \sim 100 \ MeV/c^2$ @ 10 GeV/c²(separation of Υ states).

Trigger System:

- RPC with 21000 readout channels;
- time resolution < 2 ns, decision in < 800 ns, L0 dimuon trigger < 1 kHz in PbPb collisions;
- two programmable trigger p_t cuts among,

 $p_t \sim 0.5 \; {
m GeV/c} \; ({
m min}) \qquad p_t \sim 1 \; {
m GeV/c} \; (J/\Psi) \qquad p_t \sim 2 \; {
m GeV/c} \; (\Upsilon).$

- **MUON Filter:** stop hadrons and low p_t muon track.
- **O Data taking rate:** < 1 kHz (DAQ bandwidth & tracking chamber readout).

Strategy of Measurement $\sigma^{B/D}$ in pp via (di)muons

PDC08 open charm open bottom <u>م</u> 10 input: PYTHIA p^{min} [GeV/c] $\sigma^{B/D}(p_{*} > p_{*}^{min}.-4 < \eta < -2.5) = \frac{N_{\mu} \pm /\mu^{-} \mu^{+} \leftarrow B/D(\Phi^{\mu} \pm /\mu^{-} \mu^{+})}{\Gamma_{Idt}} \times \frac{1}{\epsilon} \times [\frac{\sigma^{B/D}(p_{t} > p_{t}^{min})}{\sigma^{B/D}(\Phi^{\mu} \pm /\mu^{-} \mu^{+})}]MC$

pp @ 14 TeV simulation

Background subtraction:

get differential inclusive B & D hadron cross sections.

$$\int Ldt \wedge \epsilon \wedge l_c$$

 $*\Phi^{\mu^{\pm}}/\mu^{-}\mu^{+}$ denotes a special kinematic phase space of $\mu^{\pm}/\mu^{-}\mu^{+}$.

Method widely used and well documented

- UA1: pp̄ colissions @ $\sqrt{s} = 0.63$ TeV, single muons and dimuons, C. Albajar et. al., PLB 213 (1988) 405.
- **CDF**: $p\bar{p}$ collissions @ $\sqrt{s} = 1.8$ TeV, single electrons, F. Abe *et. al.*, PRL 71 (1993) 4.
- **D0:** $p\bar{p}$ collisions @ $\sqrt{s} = 1.8$ TeV, single muons and dimuons. B. Abbott *et. al.*, PLB 487 (2000) 264-272.

Note: disentangling charm and bottom components has never been achieved with such a method in the past.

X. M. Zhang (LPC, IOPP & QLPL)

 $\sim 1.2 \times 10^9$ min-bias triggered events and $\sim 1.3 \times 10^8$ MUON triggered events in 2010 data taking of pp collisions @ $\sqrt{s}=7$ TeV.

Strategy of $\mu^{\pm} \leftarrow \mathsf{HF}$ Extraction in *pp* data @ 7 TeV

Road Map

- Event and track selection;
- e background subtraction;
- O correction for the acceptance and reconstruction efficiency;
- obtain muon p_t spectrum from HF, $dN^{\mu \leftarrow HF}/dp_t|_{-4 < \eta < -2.5}$;
- **(a)** convert muon p_t spectrum to muon differential cross section, $d\sigma^{\mu \leftarrow HF}/dp_t|_{-4 < \eta < -2.5}$.

Event and Track Selection for Data in pp @ 7 TeV

Event Selection

• Select INEL events with minimum-bias trigger or MUON trigger.

Track Selection

- from reconstructed vertex, improve the precision of track kinematics;
- $-4 < \eta < -2.5$, select tracks in ALICE/MUON acceptance;
- $171^{\circ} < \theta_{abs} < 178^{\circ}$, cut off radius at the end of front absorber, avoid multi-scattering effect from different materials;
- matching with MUON trigger, remove punch-through hadrons.

- MUON trigger system very effective to reject the hadronic component;
- after event and track selection, the main background is $\mu \leftarrow \text{primary } K/\pi$ (in $p_t > 2 \text{ GeV/c}$).

$\mu \leftarrow \text{Primary } K/\pi$ Subtraction: Using Simulated Shapes

- Assume the shape of the p_t distribution of $\mu \leftarrow$ primary K/π is described by models;
- get the pt shape of primary muons from MC predictions;

• get the ratio
$$R^{MC}(\eta) = \frac{N_{\mu}^{primary}}{N_{\mu}^{total}}|_{low \ p_t}$$
 in different η regions;

- normalize the MC shape to the data according to the value of $R^{MC}(\eta)$ in each η region;
- subtract the normalized primary muons from data.

We focus on the region in $p_t > 2 \text{ GeV/c}$, the contribution of secondary muons can be neglected.

X. M. Zhang (LPC, IOPP & QLPL)

$\mu \leftarrow \text{Primary } K/\pi$ Subtraction: Systematic Error Estimation

- The systematic error on primary muon subtraction includes the systematic error from R^{MC} and that from p_t shape of primary muons;
- the systematic error from R^{MC} depends on the different MC models and different transport codes (Geant3, Geant4 and Fluka ···).

 $\sigma(\textit{primary } \mu \textit{ sub}) = \sigma(R^{MC}) \oplus \sigma(\textit{shape } p_t^{MC}), \sigma(R^{MC}) = \sigma(\textit{model}) \oplus \sigma(\textit{transport code})$

Pythia Perugia-0 tuning, Pythia ATLAS-CSC tuning

• The systematic uncertainty from different transport codes is estimated by adjusting the yield of the secondary muons within ±100%.

X. M. Zhang (LPC, IOPP & QLPL)

Heavy Flavour Phys. @ LHC/ALICE

Detection and acceptance Efficiency Correction

- 2D ($\eta \& p_t$) correction is applied;
- correction matrices (eff_{corr}) are built by $\mu \leftarrow$ charm & $\mu \leftarrow$ bottom via MNR predictions;
- systematic error is estimated by comparing the corrected result from eff^{μ→charm}_{corr} and that from eff^{μ→charm}_{corr}.

- the correction efficiency is not sensitive to the p_t shapes of muons in $p_t > 2 \text{ GeV/c}$;
- the differences between the corrected results via $eff_{corr}^{\mu \leftarrow \text{charm}}$ and that via $eff_{corr}^{\mu \leftarrow \text{bottom}}$ in data < 1%;
- the systematic error from efficiency correction can be neglected.

Sources of Systematic Error

- background subtraction: from 20% to 7% with p_t ;
- alignment: $2\% \times p_t$;
- detector response: 5%;
- model bias: 20%;
- min-bias cross section: 10% (not included);
- total: from 29% ($p_t = 2 \text{ GeV/c}$) to 24.4% ($p_t = 6.5 \text{ GeV/c}$).

The pQCD (FONLL) calculation reproduces well the shape and is in agreement with data within errors.

X. M. Zhang (LPC, IOPP & QLPL)

Image: A math a math

Outlook: $\sigma^{B/D}$ in pp @ 14 TeV via (di)muons

- disentangle open charm & bottom components, $d\sigma^{\mu \leftarrow D/B}/dp_t|_{-4 < \eta < -2.5}$;
- from muon cross sections to open charm & bottom hadron cross sections, $d\sigma^{D/B}/dp_t|_{-4<\eta<-2.5}$.

- input distributions are well reconstructed;
- nice agreement between single muon and dimuon channels;
- systematic errors are 20% for *B* and *D* in the single muon channel and, 15% for *B* and 20% for *D* in the dimuon channel;
- 92% (33%) of σ^B (σ^D) is reconstructed via single muons and, 84% (34%) of σ^B (σ^D) is reconstructed via dimuons;
- this analysis procedure is currently applied to pp data at 7 TeV.

X. M. Zhang (LPC, IOPP & QLPL)

Heavy Flavour Phys. @ LHC/ALICE

FCPPL Workshop, April 7-9, 2011

PbPb data @ $\sqrt{s_{NN}} = 2.76$ TeV

Muon R_{CP} and R_{AA} in PbPb collisions at 2.76 TeV: work in progress.

X. M. Zhang (LPC, IOPP & QLPL)

• • • • • • • • • • • • •

Summary of My Activities (2010~now)

Co-PhD Student of FCPPL:

- between: Institute of Particle Physics, Huazhong Normal University, Wuhan, China Laboratoire de Physique Corpusculaire, Université Blaise Pascal et IN2P3/CNRS, Clermont-Fd, France;
- Supervisors: Daicui Zhou (China), Philippe Crochet & Nicole Bastid (France);
- work within the ALICE-MUON Collaboration;
- scholarship is supported partially by a grant from the France-China embassy.

publications (with direct contribution),

- ALICE note: ALICE-INT-2010-004,
- ALICE note: ALICE-INT-2011-XXX,
- Chinese Phys., C34 (9):1538, 2010,
- proceeding for Bormio Winter Workshop, to be published;
- measurement of $\sigma^{\mu \leftarrow HF}$ in pp collisions @ $\sqrt{s} = 7$ TeV, in preparation;

2 presentations:

- ALICE Physics Week, Paris, France, May 17-21, 2010,
- Rencontres QGP-France 2010, Etretat, France, September 20-23, 2010,
- First ReteQuartonii Workshop, Nantes, France, October 25-28, 2010,
- XLIX International Winter Meeting on Nuclear Physics, Bormio, Italy, January 24-28, 2011,
- LHCC Students' Poster Session, CERN, March 23, 2011,
- oral talk at Quark Matter 2011, approved by ALICE (abstract to be submitted to QM2011);
- several talks in ALICE-PWG3 & ALICE-MUON meetings;
- Paper Committe Member in ALICE:
 - "Heavy flavour production in the single muon channel in proton proton collisions at $\sqrt{s} = 7$ TeV, measured with the ALICE detector",
 - "Heavy flavour production in the single muon channel in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, measured with the ALICE detector";
- Shifts for the trigger of the ALICE-MUON spectrometer.

Image: A math a math

Conclusion

- The differential production cross section as a function of p_t of muons from HF has been measured in 2 GeV/c< $p_t < 6.5$ GeV/c, $-4 < \eta < -2.5$;
- results are consistent with the FONLL predictions within errors.

Outlook

- Use other methods to subtract primary muons for cross check;
- separation of D and B meson decay muon cross sections;
- calculate R_{CP} & R_{AA} in PbPb collisions @ 2.76 TeV;
- single muon flow analysis in forward region.

Thanks!

X. M. Zhang (LPC, IOPP & QLPL)

Backup

X. M. Zhang (LPC, IOPP & QLPL)

Heavy Flavour Phys. @ LHC/ALICE

FCPPL Workshop, April 7-9, 2011 21 / 22

・ロト ・日子・ ・ ヨト

Outlook: $\mu \leftarrow \mathsf{Primary} \ K/\pi \ \mathsf{Subtraction}$: Vertex Unfolding Fitting

- Method has been already successfully tested on simulations;
- expected linear increase of muon yield w/ the vertex position evidenced with data;
- high statistics is needed.
- the method is not used in the results shown in the following.