

Heavy Flavour Production at LHCb

Zhenwei YANG @Tsinghua Univ. on behalf of LAL & Tsinghua Groups

07-09, April, 2011

Shandong Univ., China

LAL-Tsinghua Collaborations

• Project leaders:

P. Robbe/Y. Gao

• Topics:

 J/ψ production and polarization Bc Physics

• People involved:

J. He (LAL) B. Liu (LAL/Tsinghua) W. Qian (LAL/Tsinghua) M.-H. Schune (LAL) Z. Yang (Tsinghua)

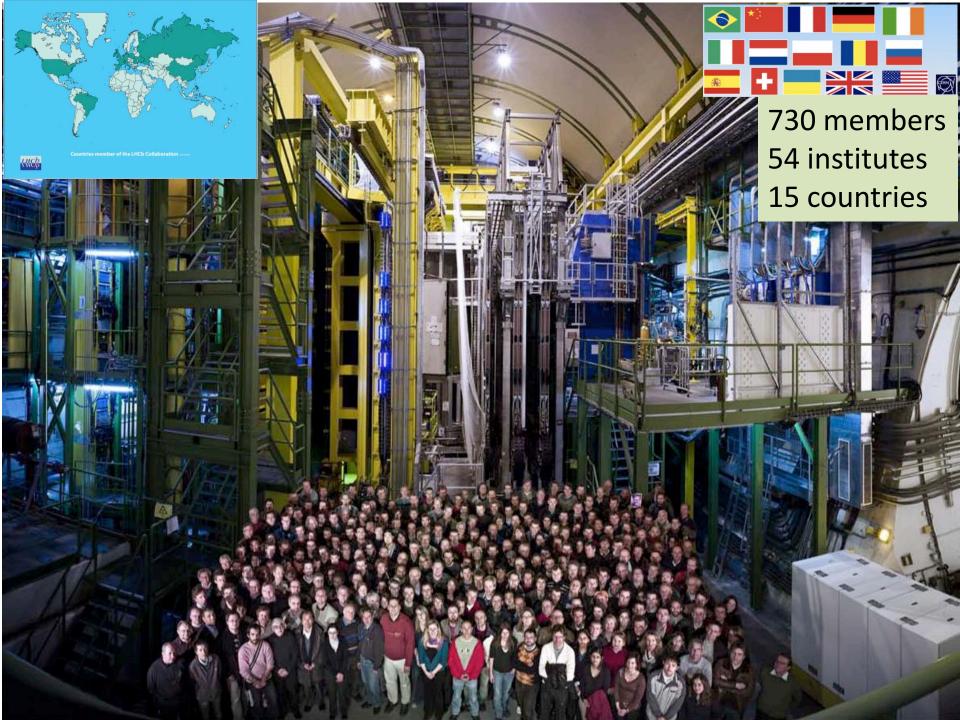
LAL-Tsinghua Collaborations(conti.)

- Progress: J/ψ production: conf-note, ICHEP2010 paper submitted to EPJC, 2011
 Bc physics: conf-note, BEAUTY2011
- Conference talks(2010-2011): P. Robbe, Quankonium2010
 Z. Yang, CHARM2010
 W. Qian, LPCC (Dec. 2010)
 J. He, BEAUTY2011
 - Y. Gao, Hadron2011

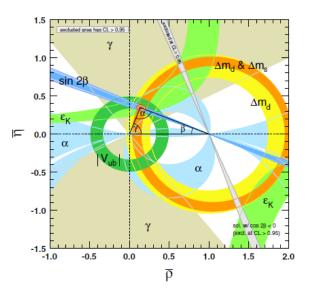
Outline

- Physics aims of LHCb
- >LHCb detector and performance
- Heavy flavor production at LHCb J/ψ production & polarization Bc studies
- Summary & prospective

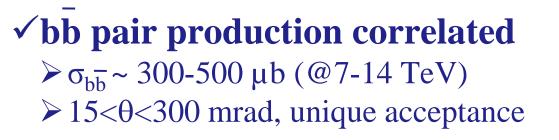
Successful running in 2009 @ 2.36 TeV
 First collisions @ 7 TeV on March 30, 2010
 Integrated Lumi ~ 37.7 pb⁻¹ (End of 2010)

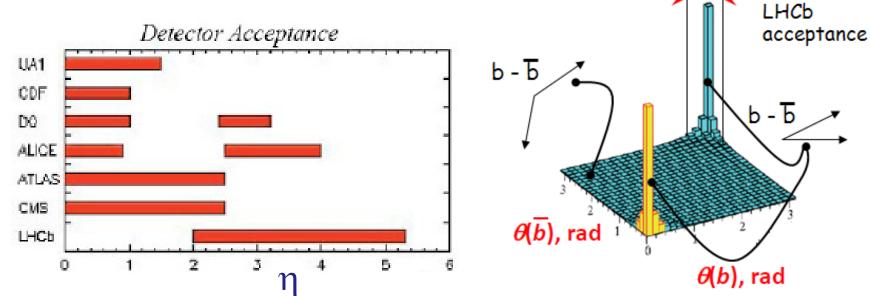

Geneva

Physics Aims of LHCb

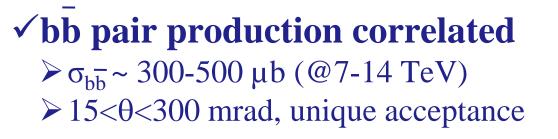

"dedicated to heavy flavour physics at the LHC"

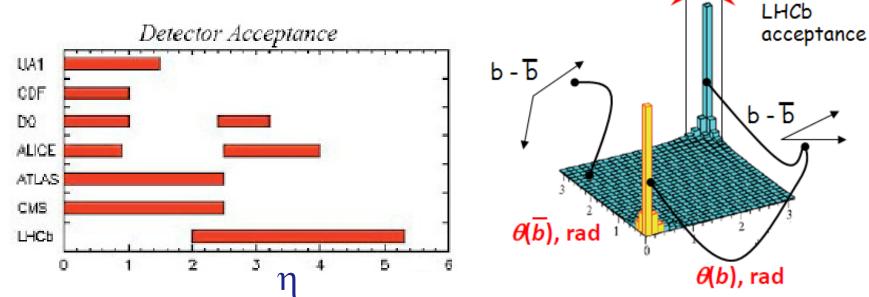
• New Physics


CP violation: precise measurements of CKM angles **rare decays** of beauty and charm hadrons

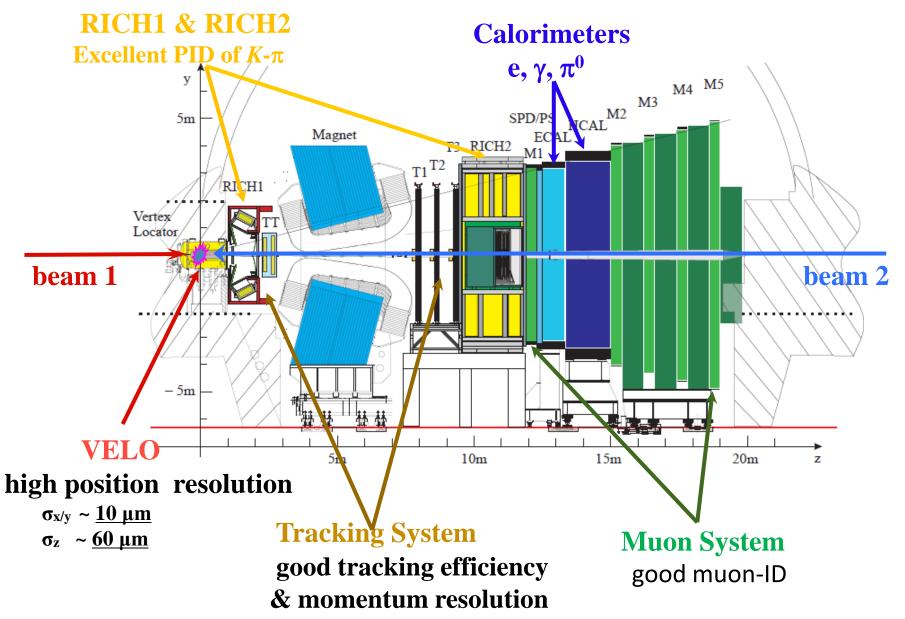

Heavy Flavour Physics

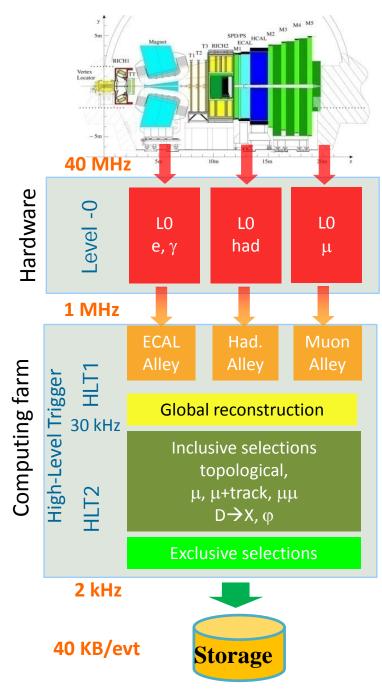
B production B_c, b-baryon physics charm decays (e.g. D-mixing) tau lepton flavour violation


bb production at LHC



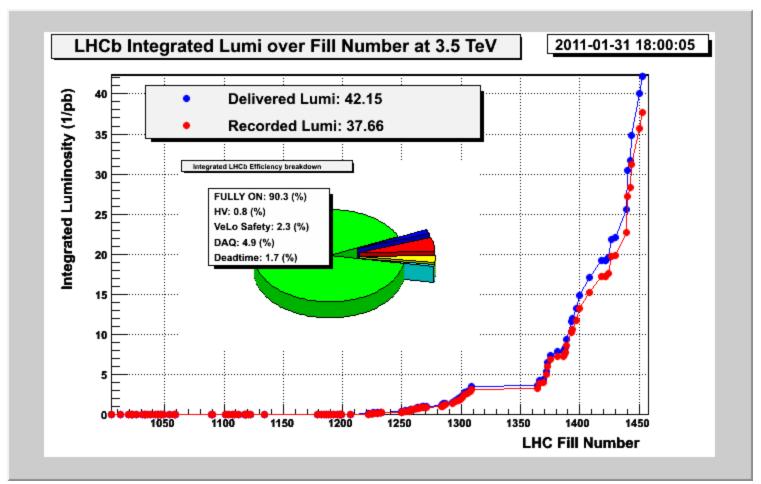
✓ Average design Luminosity ~ 2×10³² cm⁻²s⁻¹
 ▶ 2 fb⁻¹ per nominal year (10⁷ s), ~ 10¹² bb pairs per year


bb production at LHC



✓ Average design Luminosity ~ 2×10³² cm⁻²s⁻¹
 ➢ 2 fb⁻¹ per nominal year (10⁷ s), ~ 10¹² bb pairs per year

LHCb Detector



LHCb Trigger

Trigger is essential to LHCb: L0 (hardware), Hlt1, Hlt2 (software) J/ψ and B_c related:

- L0 trigger
 - single muon: $p_T > 1.4 \text{ GeV}/c$
 - di-muon: $p_{T,1} > 0.56 \text{ GeV}/c$, $p_{T,2} > 0.48 \text{ GeV}/c$
- Hlt1 trigger
 - single muon: confirm L0 single muon & require p_T>1.8 GeV/*c*
 - di-muon: confirm L0 di-muon/single muon & require $m_{\mu\mu}$ >2.5GeV/ c^2
- Hlt2 trigger
 - di-muon: p_T(μ) > 0.5 GeV/*c* & m_{μμ}>2.9GeV/*c*²

LHCb Data Taking of 2010

Stable data taking with high efficiency in all subsystems

J/ψ production

(see arXiv: 1103.0423 [hep-ex])

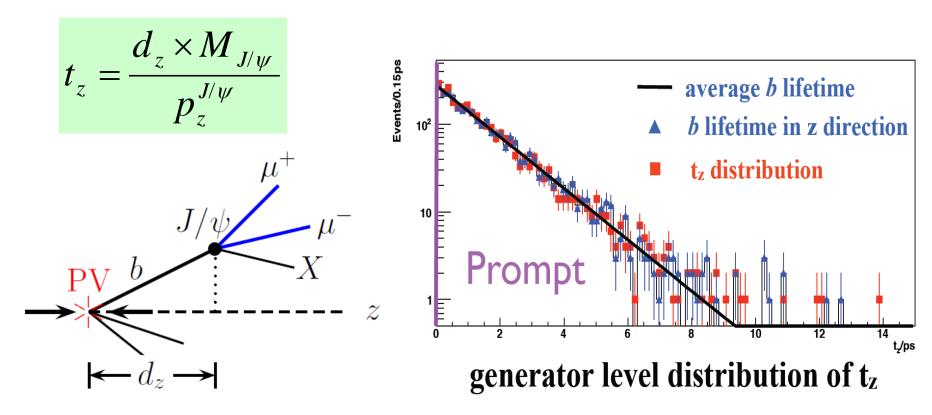
J/ψ cross-section (and polarization)

Production mechanism still not well understood, theoretical interests on direct J/ψ

> Three main sources of J/ ψ

- 1) Direct J/ ψ
- 2) Decay from heavier charmonium
- 3) Decay from b-hadrons

Prompt J/ψ


 $\int J/\psi$ from b

Using 5.2 pb⁻¹ of data collected end 09/2010, with proton-proton collision at $\sqrt{s} = 7$ TeV.

Measurement of J/ ψ cross section

- Cross section (both prompt J/ ψ and J/ ψ from b)
 - $\frac{d^{2}\sigma}{dp_{T}dy} = \frac{N(J/\psi \to \mu^{+}\mu^{-})}{L \cdot \varepsilon_{tot} \cdot Br(J/\psi \to \mu^{+}\mu^{-}) \cdot \Delta p_{T} \cdot \Delta y}$ $N : \text{Signals from reconstruction of } J/\psi \to \mu^{+}\mu^{-}$ $\varepsilon_{tot} = \varepsilon_{acc} \times \varepsilon_{rec} \times \varepsilon_{trig}$ $14 \text{ bins in } p_{T}, 0 < p_{T} < 14 \text{ GeV/c}$ 5 bins in y, 2 < y < 4.5
- Separate "prompt J/ ψ " from "J/ ψ from b" by fitting pseudo-proper time t_z $\longrightarrow \sigma$ (incl. J/ ψ) σ (J/ ψ from b)

Measurement of J/ ψ cross section

(for J/ ψ from b)

- good approximation of average b lifetime
- well described by exponential distribution

Event Selection & Mass fit

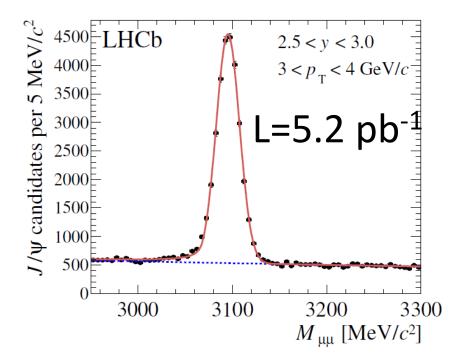
Lifetime unbiased muon trigger & offline event selection

- * Good tracks identified as μ by muon system, loose cuts on \textbf{p}_{T}
- * Good vertex fit quality of $\mu\text{+}\ \mu\text{-}\ \text{tracks}$

 $* \geq 1$ primary vertex reconstructed

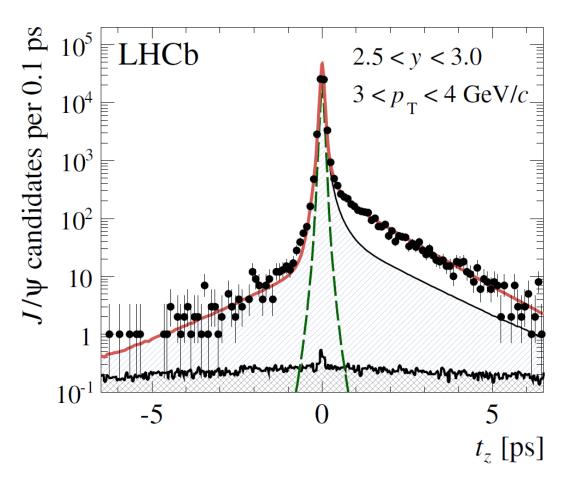
≻Mass fit

- * Signal: Crystal Ball function
- * Background: Exponential


* Mass fitted separately in 70 bins

Fit results (of 1 bin):

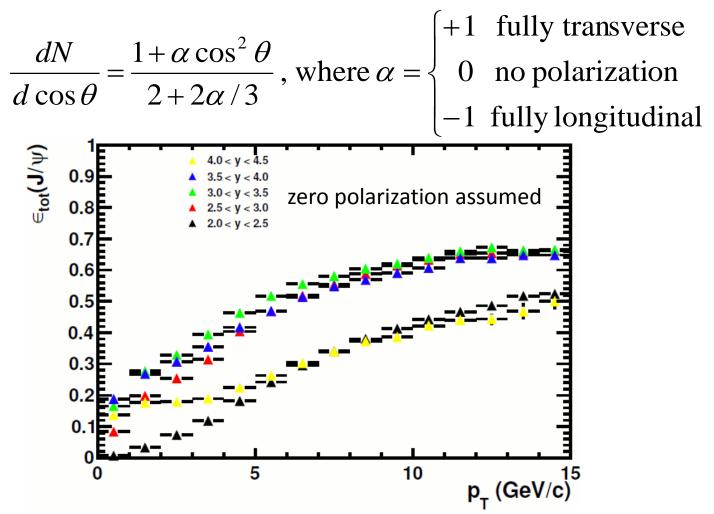
(2.5<y<3, 3<p_T<4 GeV/*c*)


 μ = (3095.3 \pm 0.1) MeV/ c^{2}

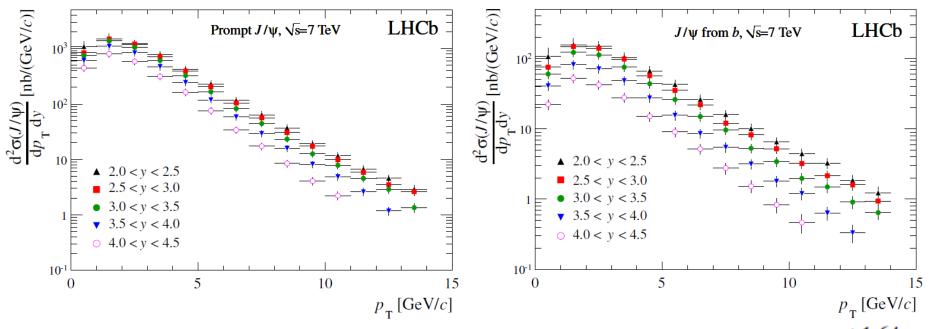
σ = (12.3 ± 0.1) MeV/*c*²

Total signal yield ~ 560,000 J/ψ₆

t_z Fit Result



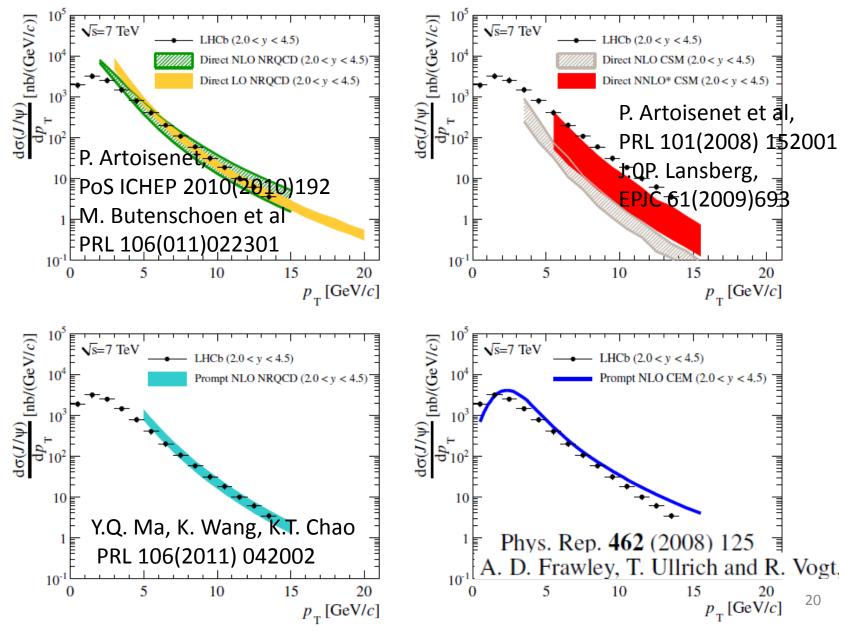
1) Background estimated from invariant mass sidebands 2) Long tail due to association to wrong primary vertex, obtained in data by associating J/ψ vertex to PV of next event


Fit results (2.5<y<3, 3< p_T <4 GeV/c): $f_b = n_b/(n_p + n_b) = (12.0 \pm 0.2)\%$ < $\sigma > = 53$ fs

Total Efficiency and Polarization Effect

- ε depends strongly on polarization
- treated as systematic error for first measurement

Production results: 5.2 pb⁻¹


 σ (prompt J/ψ , $p_{\rm T} < 14 \,\text{GeV}/c$, 2.0 < y < 4.5) = $10.52 \pm 0.04 \pm 1.40^{+1.64}_{-2.20} \,\mu\text{b}$

 σ (J/ ψ from b, $p_T < 14$ GeV/c, 2.0 < y < 4.5) = $1.14 \pm 0.01 \pm 0.16$ µb Systematic uncertainty dominated by trigger (10%) and tracking (8%) efficiencies.

Extrapolating to the total bb cross section

 $\sigma(pp \rightarrow b\overline{b}X) = 288 \pm 4 \pm 48 \, \text{ub} \quad \text{(see arXiv: 1103.0423 [hep-ex])} \\ \mathscr{B}(b \rightarrow J/\psi X) = (1.16 \pm 0.10) \%^{-19}$

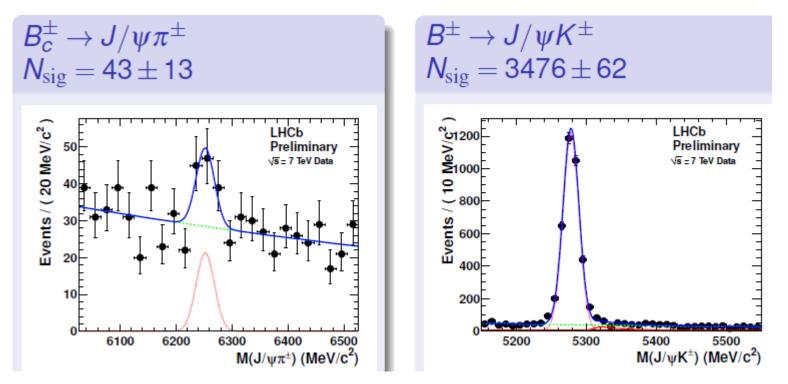
Comparison with theor. models

J/ψ polarization

- Knowledge of polarization helps to significantly reduce the error of cross-section measurement
- Great challenges (& interests?) to theoretical models
- A direct measurement of polarization with full angular analysis is under investigation and result is foreseen recently.

$$\frac{d^2 N}{d\cos\theta d\phi} \propto 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\theta\phi} \sin 2\theta \cos\phi + \lambda_{\phi} \sin^2\theta \cos 2\phi$$
35 pb⁻¹ of data used
3.7 M J/w candidates

B_c cross-section


- B_c : unique meson with two open heavy flavors
- Fully reconstructed $B_c^{\pm} \rightarrow J / \psi(\mu^+ \mu^-) \pi^{\pm}$ used, Large sample $B^{\pm} \rightarrow J / \psi K^{\pm}$ as reference
- Measure relative cross section :

 $R = \frac{\sigma(B_c^{\pm}) \times Br(B_c^{\pm} \to J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \times Br(B^{\pm} \to J/\psi K^{\pm})} = \varepsilon_{\text{rel}} \times \frac{N(B_c^{\pm})}{N(B^{\pm})}$ with $p_T(B) > 4 \text{ GeV}/c$ and $\eta \in (2.5, 4.5)$

~32 pb⁻¹ of data used (collected 08-10 of 2010) see: LHCb-CONF-2011-017

Extraction of N(B_c^{\pm}) and N(B^{\pm})

- Nearly identical selections between $B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$ and $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Cabibbo suppressed background $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ considered for $B^{\pm} \rightarrow J/\psi K^{\pm}$

Results

• for $p_T(B) > 4 \text{ GeV}/c$ and $\eta \in (2.5, 4.5)$

$$R = \frac{\sigma(B_c^{\pm}) \times Br(B_c^{\pm} \rightarrow J/\psi\pi^{\pm})}{\sigma(B^{\pm}) \times Br(B^{\pm} \rightarrow J/\psiK^{\pm})}$$
$$= (2.2 \pm 0.8 |_{\text{stat.}} \pm 0.2 |_{\text{sys.}})\%$$
$$= (1.4 \pm 0.4 |_{\text{stat.}} \pm 0.1 |_{\text{lifetime}})\%$$

if model (BcVegPy) dependent total efficiency used. cf: C. Chang et al., Comput. Phys. Commun. **159** (2004) 192; Comput. Phys. Commun. **175** (2006) 624

Summary & prospective

- Differential cross-section of J/ ψ production in *pp* collisions at $\sqrt{s}=7$ TeV has been measured at LHCb with 5.2 pb⁻¹ of data as function of p_T and *y*.
- Large uncertainties due to unknown J/ ψ polarization will be reduced by the polarization measurement of prompt J/ ψ recently.
- B_c [±] production cross-section relative to that of B[±] measured preliminarily.
- More B_c studies are on-going(lifetime, semileptonic channels,...)

Thank you

back up

Event Selection of J/ψ

Data Sample

• (5.2 \pm 0.5) pb⁻¹ (low pile-up conditions)

Event selection

- 2 muons
 - good quality of track fit (χ^2 /ndf < 4)
 - identified as muon by muon system
 - good vertex reconstructed (χ^2 prob. > 0.5%)
 - $p_{T} > 700 \text{ MeV/c}$
 - Mass window for signal definition: (2.95 < $M_{J/\psi}$ < 3.30) GeV/c²

• Trigger LO

- single muon, $p_T > 1.4 \text{ GeV/c}$
- dimuon, p_{T,1}>0.56 GeV/c, p_{T,2}>0.48 GeV/c

• HLT:

- single muon, p_T > 1.8 GeV/c .OR. muon pair with M_{\mu\mu} > 2.9GeV/c^2

Systematics of Jpsi

Source	Systematic uncertainty (%)
Correlated between bins	
Inter-bin cross-feed	0.5
Mass fits	1.0
Radiative tail	1.0
Muon identification	1.1
Tracking efficiency	8.0 ¹
Track χ^2	1.0
Vertexing	0.8
Global event cuts	2.0
$\mathscr{B}(J\!/\psi ightarrow\mu^+\mu^-)$	1.0
Luminosity	10.0 ²

¹4% per track, improved recently

²dominated by uncertainty of the LHC proton beam currents, improve recently

Systematics of Jpsi (conti-)

Source	Systematic uncertainty (%)	
Uncorrelated between bins		
Bin size	0.1 to 15.0	
Trigger	1.7 to 4.5	
Applied only to J/ ψ from b cross-sections, correlated between bins		
Global event cuts efficiency on B events	2.0	
<i>t_z</i> fits	3.6	
Applied only to the extrapolation of the bb cross-section		
b hadronisation fractions	2.0	
$\mathscr{B}(b o J/\psi X)$	9.0	

Systematics of Bc(preliminary)

Quantity	Systematic error (%)
B_c^+ lifetime	6.0
J/ψ vertexing	1.6
Track χ^2	3.0
Trigger	3.0
Tracking	1.0
Weight procedure	2.3
Total	7.9

Table 1: Summary of systematic uncertainties.