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—. Introduction

High precision QCD theoretical calculation is important,
it has developed rapidly in recent years.
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In the case of QED, the renormalization scale can be set
unambiguously by using the Gell-Mann-Low method, which
automatically sums all vacuum polarization contributions to
the photon propagators to all orders.
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—.. principle of maximum conformality

PHYSICAL REVIEW D 85, 034038 (2012)

PMCERIFRIE Scale setting using t-hc cxt_cndt'zc} rcnn{"malizat?nn group and tl}c principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky'* and Xing-Gang Wu'*"

%%}J *E &%){%BLM 'SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
P AT\Y 2 . L | . : - :
2 A Department of Physics, Chongging University, Chongging 401331, China
HERI T FH (Received 30 November 2011; published 22 February 2012)
r r week ending

}:ﬂﬁﬁ n%%‘fhfﬁ% PRL 109, 042002 (2012) PHYSICAL REVIEW LETTERS 27 JULY 2012

B2 i)h
Bﬁ\%'ﬁ\, {EPMC}E Eliminating thc_ Renormalization Scale Ambiguity for Top-Pair Production
A Using the Principle of Maximum Conformality
rig i

Stanley J. Brodsky"* and Xing-Gang Wu'*"
'SIAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Califomia 94025, USA

:Demmnem of Physics, Chongging University, Chongging 401331, People's Republic of China
(Received 29 March 2012: published 23 July 2012)

sck ending
PRL 110, 192001 (2013) PHYSICAL REVIEW LETTERS 10 MAY 2013
5
Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza™
CP3-Origins, Danish Institute for Advanced Studies, University of Southem Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley I. Brodsky'
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu*
Deparntment of Physics, Chongging University, Chongging 401331, People's Republic of China
(Received 13 January 2013; published 10 May 2013)




—.. principle of maximum conformality
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principle of maximum conformality
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=.. Event shapes and extracting as at LEP

as is a free parameter
in QCD.

as(M%) = 0.1181 4 0.0011 ,

0.9%

[Particle Data Group],
Phys. Rev. D98, 030001 (2018)



=.. Event shapes and extracting as at LEP

The classic event shapes: the thrust (T), the heavy jet mass (M_H"2/s), the
wide and total jet broadenings B_W and B_T, the C-parameter (C)
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: Currently, the main obstacle for achieving a precise determination of
12 (M,) is not the lack of precise experimental data, especially at Z°
: peak, but the ambiguity of theoretical predictions.

Rep. Prog. Phys. 69, 1771 (2006).



=.. Event shapes and extracting as at LEP

The method for extracting a,(M) in e*e collider:

» predictions matched Monte Carlo models to correct for
hadronization effects

» based on analytic calculations of non-perturbative and
hadronization effects, using methods like power corrections,
factorization of soft-collinear effective field theory, dispersive
models and low scale QCD effective couplings

| We note that there is criticism on both classes of as extractions described above: |
| those based on corrections of non-perturbative hadronization effects using QCD-inspired |
| Monte Carlo generators (since the parton level of a Monte Carlo simulation is not defined |
| in a manner equivalent to that of a fixed-order calculation), as well as studies based |
I
I
I

on non-perturbative analytic calmllations,[ as their systematics have not yet been fully ]
verified. In particular, quoting rather small overall experimental, hadronization and |
theoretical uncertainties of only 2, 5 and 9 per-mille, respectively [425,427], seems |
lerealistic and has neither been met nor supported by other authors or groups. I

(P [Particle Data Group],
. Phys. Rev. D98, 030001 (2018)



=.. Event shapes and extracting as at LEP
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/> The a,(M,) are plagued by
significant scale uncertainty

» Some extracted a,(M,) are
deviated from the world average

> non-self-consistent

/




=.. Event shapes and extracting as at LEP

The differential distribution for a event shape:

1 dec - — . 9, = i
—% = A(r)a@ B(r)ag(Q) + O(ay). Q= using

conventional method
1 do - 2, pme:
oy = A @) 1By ™) + O
oy, dT

) 11C, - _
B(T, j1r)eon = T B(, jur )nf + B(7, i1 )in,

3B(T. 1y )
(P = i exp [ ( — ir ) —|—O((1’5)] :
Tr 4(



=.. Event shapes and extracting as at LEP

et
Ln

Conventional results
at 91.2 GeV
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Central values are Q =
91.2 GeV, the errors

are [Q/2, 2Q].
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Phys. Rev. Lett. 99, 132002
JHEP 0712, 094
Phys.Rev. Lett. 101, 162001
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=.. Event shapes and extracting as at LEP

Event shapes using the conventional method:

The NLO and NNLO are large and the pQCD
series shows a slow convergence.

CjoryderfdC

Estimating the unknown higher order QCD by
varying the scale [1/2Q, 2Q)] is unreliable.

The predictions are plagued by scale uncertainty,
and even up to NNLO, the predictions do not
match the data.

The extracted coupling constants are deviated

from the world average, and are also plagued by
scale uncertainty.



=.. Event shapes and extracting as at LEP

PMC scales: ! i ® Remarkably, the PMC scales change
dynamically with event shapes;

€ The quarks and gluons have soft
virtuality near the two-jet region. The
PMC scales are very soft in this region,
while in the regions away from the
two-jet region, the PMC scales are
increased, as expected;

PMC scales (GeV)

PMC scales (GeV)

PMC scales (GeV)

kinematic regions compared to the
conventional method \sqrt{s};

& The PMC scales increase with the
center-of-mass energy;

@ yields the correct physical behavior,
and similar behavior are obtained in
the SCET theory and other literatures
(ZPA 339, 189; EPJC 74, 2896).

PMC scales (GeV)
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=.. Event shapes and extracting as at LEP

Perturbative coefficients:

In addition to the PMC scales, the behavior

of the PMC conformal coefficients is very
B(y. jtr) = B(y. pir)eon + B(y. pir) 3, - Po, different from that of the conventional
scale-setting method.
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=.. Event shapes and extracting as at LEP
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» The resulting PMC predictions are
increased in wide kinematic
regions compared to the
conventional predictions.

» Since the PMC scales are
independent of the choice of
renormalization scale and the R
conformal coefficients are also S S
renormalization scale independent, 1A :
the PMC predictions eliminate the NI NI
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=.. Event shapes and extracting as at LEP
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=.. Event shapes and extracting as at LEP
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=.. Event shapes and extracting as at LEP

Event shape distributions
below Z0peak




=.. Event shapes and extracting as at LEP

-=- Conv.,LO

-~ Conv.,NLO

-=- Conv., NNLO
— PMC

« ALEPH data

» The PMC predictions are greatly
increased in wide kinematic regions,
which leads PMC results to be closer to
the experimental data.

» There are some deviations near the two-
jet and multijet regions, since there are
large logarithms that spoil the
perturbative regime of the QCD. The
resummation of large logarithms is thus
required for the PMC results especially
near the two-jet regions.
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=.. Event shapes and extracting as at LEP

(data-fit)/data
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=.. Event shapes and extracting as at LEP

R Q=/S =M,

N

< Q <16 GeV

Q(GeV)

Figure 12. The extracted running coupling a4(Q?)

paring the PMC predictions with the ALEPH data 0241 b
GeV. As a comparison, the solid line is the world ay V3 =912 GeV
and two dashed lines represent its uncertainty. o2l 1
s b 6 < QK9 GeV
‘gf 020+ ﬂl J R
018 %% L BRI EaEEeE
016 R
6.0 6.5 7.0 7.5 8.0 8.3 9.0
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Figure 13. Similar to Fig. (12), but ay 026F ]
0241 Vs =912 GeV 1
_ 022 &
]
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018}
016 }
40 45 30 35 &8 &5 10
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Figure 14. Similar to Fig. (12), but a:(Q?) extracted from the wide jet broadening (Bw-) distri-
bution.




=.. Event shapes and extracting as at LEP
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Figure 15. Similar to Fig. (12), but a.(Q?*) extracted from the total jet 1

bu

Figure 16. Similar to Fig. (12), but a.(Q?) extracted from the C-parameter (C') distrib

w4<Q<19GeV

broadening (Br) dfs

(0%

v' The extracted o . are in agreement with the
world average in wide range of Q.

v The extracted o , are not plagued by scale
uncertainty.

v' Since PMC scale varies with event shapes,
we can extract the strong coupling at a wide
scale range using the experimental data at
single center-of mass-energy.

3<Q<11GeV

In QED, the running of the QED coupling at a
wide scale range can be determined from
events at a single energy

e.g., (OPAL Collaboration), EPJC 45,1 (2006)

Ttiom.




=.. Event shapes and extracting as at LEP

Y9y do
the mean value of event shapes, (y) = / ———dy,
Jo Oh a4y

v' it involves an integration over the full phase space.

v' it provides an important complement to the differential
distributions and to determinate o«

| ey = 0.0695y/s. and pP™¢[(cy = 0.0656+/5, :

et pPme < (/s s also suggested by

v’ PMC scales of differential distribution : - :
l I Studies of QCD at e"e™ centre-of-mass energies
are also very smaill. between 91 and 209 GeV

The ALEPH Collaboration

v' the average of the PMC scale for

differential distribution is clos'e to the Eur. Phys. J. C 35, 457 - 486 (2004)
scale of mean value. self-consistent.



=.. Event shapes and extracting as at LEP
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=.. Event shapes and extracting as at LEP

as(M%) = 0.1185 4 0.0011(Exp.) & 0.0005(Theo.)
— 0.1185 + 0.0012, 3)|L"
as(Mz) = 0.119317 5015(Exp.) £ o16(Theo.) c
= 0.1193Z5 5015, (4)

Cited by LHeC and FCC group and PDG

[Particle Data GI‘OU.p], Prog. The Large Hadron-Electron Collider at the HL-LHC
LHeC Collaboration and FCC-he Study Group (P. Agostini (Santiago
Theor. Exp. Phys. 2020 (2020), CERN-ACC-Note-2020-0002, JLAB-ACP-20-3180
e-Print: arXiv:2007.14491 [hep-ex] | PDF

083CO01.

mean value for other event
shapes, EEC, p, By, Br...



9. Event shapes from LEP to CEPC

We calculate the classical event shapes at the CEPC at 91.2, 160 and 240 GeV.
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PMC scales for event shape
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9. Event shape observables at CEPC
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Our precise and scale-
independent
predictions for event
shape observables, and
a novel way to verify
the running of as(Q”"2)
call for the precise
measurements at CEPC.
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