Discovering ditauonium(n^3S_1) in $e^+e^- ightarrow \mu^+\mu^-$ process

Jing-Hang Fu

Coauthor: Yu-Jie Zhang

fujinghang@buaa.edu.cn Beihang University

Aug. 22-24, 2022, Hangzhou

Result

Outline

Introduction

- Leptonium
- Ditauonium spectroscopy

2 Calculation frame

- Feynman diagram and Feynman amplitude
- Cross section
- Smearing effect

3 Result

- Input parameters
- Result without smearing effect
- Result within smearing effect

Result

Introduction

- Lepton and Antilepton($e^{\pm}, \mu^{\pm}, \tau^{\pm}$) can form transient bound states under QED interaction.
- 6 possible exotic leptonic atoms (e^+e^-), ($e^\pm\mu^\mp$), ($\mu^+\mu^-$), ($e^\pm\tau^\mp$), ($\mu^\pm\tau^\mp$), ($\tau^+\tau^-$).
- Only two bound states((e⁺e[−]) in 1951, (e[±]µ[∓]) in 1960) have been observed.
- The ditauonium Bohr radius $a_0 = 30.4 \text{ fm}(1/1743 \text{ of Bohr} \text{ radius of hydrogen atom})$ is the smallest of all leptonium systems.
- Also ditauonium is the most strongly bound of all leptonia only by QED interaction.

Introduction	
000000000000000000000000000000000000000	l

Result

Leptonium

Ditauonium

S wave(L=0)

Para-ditauonium(¹ S_0), S=0, $\eta_{\tau}(J^{PC} = 0^{-+})$ Ortho-ditauonium(³ S_1), S=1, $J_{\tau}(J^{PC} = 1^{--})$

P wave(L=1)

S=0,
$$h_{\tau}(J^{PC} = 1^{+-})$$

S=1, $\chi_{\tau 0}(J^{PC} = 0^{++}), \chi_{\tau 1}(J^{PC} = 1^{++}), \chi_{\tau 2}(J^{PC} = 2^{++})$

Introc	luction
000	0000000

Result

Summary 00

Ditauonium spectroscopy

Ditauonium spectroscopy

Figure: Ditauonium spectroscopy, from 2204.07269

At Leading-order, the energy levels can be described by the Schrödinger equation with the Coulomb potential.

$$E_{\rm n} = -\frac{\alpha^2 m_\tau}{4n^2} \approx -\frac{23.655 \text{ keV}}{n^2}$$

And at LO, the square of the nS wavefunction at the radial origin(r = 0),

$$|\varphi_{nS}(r=0)|^2 = \frac{(\alpha m_{\tau})^3}{8\pi n^3}$$

Introc	luction
0000	00000000

Result

Summary 00

Ditauonium spectroscopy

Ditauonium mass

Ditauonium mass is

$$m_{n^3S_1} = 2m_{ au} + E_n$$

 $m_{ au} = 1776.86 \pm 0.12 \text{ MeV}$
 $2m_{ au} \approx 3553.72 \pm 0.24 \text{ MeV}$

$$m_{1^3S_1} \approx 3353.696 \pm 0.24 \text{ MeV}$$

 $m_{2^3S_1} \approx 3353.714 \pm 0.24 \text{ MeV}$
 $m_{3^3S_1} \approx 3353.717 \pm 0.24 \text{ MeV}$

Decay widths			
Ditauonium spectroscopy			
Introduction 0000000000	Calculation frame	Result 000000000000000	Summary 00

At Leading-order, ditauonium(n^3S_1) decays into pairs of fermions lighter than half the ditauonium mass, through an intermediate sigle photon. ($f = e, \mu, u, d, s$)

$$\Gamma^{(0)}(n^3 S_1 \to f\bar{f}) = N_{c,f} Q_f^2 \, \frac{\alpha^5 \, m_\tau}{6 \, n^3} \left(1 + \frac{m_f^2}{m_{n^3 S_1}^2}\right) \sqrt{1 - \frac{m_f^2}{m_\tau^2}}$$

The zeroth-order dilepton decay

$$\Gamma^{0}(n^{3}S_{1} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}) = rac{lpha^{5}m_{ au}}{6n^{3}}$$

The zeroth-order quark-pair decay

$$\Gamma^0(n^3 {\cal S}_1 o q ar q) pprox 2.2 rac{lpha^5 m_ au}{6 n^3}$$

Introduction 00000000000	Calculation frame	Result	Summary 00
Ditauonium spectroscopy			
Decay widths			

$$\Gamma(n^3S_1 o far{f}) pprox 4.2 rac{lpha^5 m_ au}{6n^3}$$

Any of the two tau leptons decays through the weak interaction,

$$2\Gamma(\tau \rightarrow X) = \frac{2}{290.3 \text{ fs}} = 4.5346 \pm 0.008 \text{ meV}$$

For n=3, also add

$$\Gamma^{0}(3S \rightarrow 2P) = \left(\frac{2}{5}\right)^{9} \frac{3\alpha^{5}m_{\tau}}{4} \approx 0.00724 \text{ meV}$$

$$\Gamma^{0}(2P \rightarrow 1S) = \left(\frac{2}{3}\right)^{8} \frac{\alpha^{5}m_{\tau}}{2} \approx 0.718 \text{ meV}$$

Introduction 00000000000	Calculation frame	Result 000000000000000	Summary 00
Ditauonium spectroscopy			
Decay widths			

In summary,

$$\begin{split} \Gamma_{total}(1^{3}S_{1}) &= \Gamma(1^{3}S_{1} \rightarrow f\bar{f}) + 2\Gamma(\tau \rightarrow X) \\ &\approx 30.924 \text{ meV} \\ \Gamma_{total}(2^{3}S_{1}) &= \Gamma(2^{3}S_{1} \rightarrow f\bar{f}) + 2\Gamma(\tau \rightarrow X) \\ &\approx 7.833 \text{ meV} \\ \Gamma_{total}(3^{3}S_{1}) &= \Gamma(3^{3}S_{1} \rightarrow f\bar{f}) + 2\Gamma(\tau \rightarrow X) + \Gamma^{0}(3S \rightarrow 2P) \\ &\approx 5.519 \text{ meV} \end{split}$$

The annihilation decay widths($\mathcal{O}(\alpha^7)$) of P-wave are comparatively negligible.

$$\frac{\Gamma(2P \to 1S)}{\Gamma_{total}(2P)} = \frac{\Gamma(2P \to 1S)}{\Gamma(2P \to 1S) + 2\Gamma(\tau \to X)} \approx 13.67\%$$

Thus

$$\Gamma(3^{3}S_{1} \rightarrow l^{+}l^{-}\gamma\gamma) = \Gamma^{0}(3S \rightarrow 2P) \cdot \frac{\Gamma(2P \rightarrow 1S)}{\Gamma_{total}(2P)} \cdot \frac{\Gamma(1^{3}S_{1} \rightarrow l^{+}l^{-})}{\Gamma_{total}(1^{3}S_{1})}$$

$$\Gamma(3^{3}S_{1} \rightarrow l^{+}l^{-}(\gamma\gamma)) = \Gamma(3^{3}S_{1} \rightarrow l^{+}l^{-}) + \Gamma(3^{3}S_{1} \rightarrow l^{+}l^{-}\gamma\gamma)$$

Calculation frame

Result

Summary 00

Ditauonium spectroscopy

Decay widths

Table:
$$\Gamma(n^3S_1 \rightarrow e^+e^-/\mu^+\mu^-)$$

	$1^3S_1 ightarrow l^+l^-$	$2^3S_1 ightarrow l^+l^-$	$3^3S_1 ightarrow I^+I^-(\gamma\gamma)$
$\Gamma(l^+l^-)$	6.136 meV	0.767 meV	0.227 meV
Γ _{total}	30.924 meV	7.833 meV	5.519 meV
Br	19.8%	9.8%	4.1%

Calculation frame

Result

Summary 00

Feynman diagram and Feynman amplitude

Feynman diagram

Figure: Feynman diagram of $e^+e^- \rightarrow \tau^+\tau^-(n^3S_1) \rightarrow \mu^+\mu^-$.

Feynman amplitude of signal is

$$\begin{aligned} & A(e^{-}e^{+} \to n^{3}S_{1} \to \mu^{-}\mu^{+}) \\ &= A(e^{-}e^{+} \to n^{3}S_{1}) \frac{i}{s - m_{n^{3}S_{1}}^{2} + im_{n^{3}S_{1}}\Gamma} A(n^{3}S_{1} \to \mu^{-}\mu^{+}) \end{aligned}$$

Calculation frame

Result

Summary 00

Feynman diagram and Feynman amplitude

Feynman amplitude of signal

For S wave, nonrelativistic perturbation,

$$\begin{split} & \mathcal{A}(e^{-}e^{+} \to n^{3}S_{1}) \\ &= \sum_{s_{3z}, s_{4z}, S_{z}, L_{z}} \langle s_{3}, s_{3z}; s_{4}, s_{4z} | S, S_{z} \rangle \langle S, S_{z}; L, L_{z} | J, J_{z} \rangle \\ & \times \int \frac{dq^{3}}{(2\pi)^{3/2}} \, \mathcal{A}(e^{-}(p_{1})e^{+}(p_{2}) \to \tau^{-}(q/2, s_{3})\tau^{+}(q/2, s_{4})) \phi \, (0) \end{split}$$

 $A(n^3S_1 \rightarrow \mu^-\mu^+)$ is similar.

Calculation frame

Result

Summary 00

Feynman diagram and Feynman amplitude

Signal-background interference

Square of amplitude

$$\begin{aligned} |A(e^-e^+ \to \mu^-\mu^+) + A(e^-e^+ \to \tau^-\tau^+(n^3S_1) \to \mu^-\mu^+)|^2 \\ &= |A(e^-e^+ \to \mu^-\mu^+)|^2 \\ &+ |A(e^-e^+ \to \tau^-\tau^+(n^3S_1) \to \mu^-\mu^+)|^2 \\ &+ A(e^-e^+ \to \mu^-\mu^+) \times A(e^-e^+ \to \tau^-\tau^+(n^3S_1) \to \mu^-\mu^+)^* \\ &+ A(e^-e^+ \to \mu^-\mu^+)^* \times A(e^-e^+ \to \tau^-\tau^+(n^3S_1) \to \mu^-\mu^+) \end{aligned}$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 E_{cm}^2} |\bar{A}|^2$$

Result

Summary 00

Cross section

Breit-Wigner formula, from PDG2020

Resonant cross sections are generally described by the Breit-Wigner formula,

$$\sigma(E) = \frac{2J+1}{(2S_1+1)(2S_2+1)} \frac{4\pi}{k^2} \left[\frac{\Gamma^2/4}{(E-E_0)^2 + \Gamma^2/4} \right] B_{in}B_{out}$$

The branching fraction for the resonance into the initial-state channel is B_{in} and into the final-state channel is B_{out} . For a narrow resonance,

$$\sigma(E) = \frac{2J+1}{(2S_1+1)(2S_2+1)} \frac{4\pi}{k^2} \frac{\pi\Gamma\delta(E-E_0)}{2} B_{in}B_{out}$$

Calculation frame

Result

Summary 00

Cross section

Breit-Wigner formula

For n^3S_1 ,

$$J = 1, S_1 = S_2 = rac{1}{2}, k^2 pprox m_{ au}^2$$

Breit-wigner formula become

$$\sigma(E) = \frac{3\pi}{m_{\tau}^2} \left[\frac{\Gamma^2/4}{(E - E_0)^2 + \Gamma^2/4} \right] B_{in} B_{out}$$

$$\sigma(E) = \frac{3\pi}{m_{\tau}^2} \frac{\pi \Gamma \delta(E - E_0)}{2} B_{in} B_{out}$$

Calculation frame

Result

Summary 00

Smearing effect

Smearing effect, from 1505.03930

The finite experimental resolution will smear the peak. Smearing effect:

$$\sigma_{ex}(E) = \int \sigma_{th}(E_{cm}) rac{1}{\sigma_{MR}\sqrt{2\pi}} \exp\left[-rac{(E-E_{cm})^2}{2\sigma_{MR}^2}
ight] dE_{cm}.$$

Breit-wigner formula

$$\sigma_{th}(E_{cm}) = \frac{3\pi}{m_{\tau}^2} \frac{\pi\Gamma\delta(E_{cm} - E_0)}{2} B_{in}B_{out},$$

$$\sigma_{ex}(E) = \frac{3\pi}{m_{\tau}^2} \frac{\pi\Gamma}{2} B_{in}B_{out} \frac{1}{\sigma_{MR}\sqrt{2\pi}} \exp\left[-\frac{(E - E_0)^2}{2\sigma_{MR}^2}\right]$$

Smearing effect			
Smearing effect			
Introduction	Calculation frame ○○○○○○●	Result 000000000000000	Summary 00

Then the peak value is $(E = E_0)$

$$\sigma_{ex}(E_0) = rac{3\pi^2\Gamma}{2m_{ au}^2}B_{in}B_{out}rac{1}{\sigma_{MR}\sqrt{2\pi}}$$

Result

Result

Result

Input parameters

Input parameters, from PDG2020

Fermion mass

 $m_e = 0.5109989461 \pm 0.000000031 \; {
m MeV}$ $m_\mu = 105.6583745 \pm 0.0000024 \; {
m MeV}$ $m_ au = 1776.86 \pm 0.12 \; {
m MeV}$

Parameters

 $\alpha = 1/137$ $2\Gamma_{\tau} = 4.5346 \pm 0.008 \text{ meV}$ $m_{1^{3}S_{1}} = 3353.696 \pm 0.24 \text{ MeV}$ $m_{2^{3}S_{1}} = 3353.714 \pm 0.24 \text{ MeV}$ $m_{3^{3}S_{1}} = 3353.717 \pm 0.24 \text{ MeV}$

Calculation frame

Result

Summary 00

Result without smearing effect

Result of $1^{3}S_{1}$ without smearing effect

Figure: The invariant mass distribution of signal and interference without smearing effect. The peak value of signal is 45.768 μ *b*, and the peak value of interference is 0.561 μ *b*.

Calculation frame

Result

Summary 00

Result without smearing effect

Result of 2^3S_1 without smearing effect

Figure: The invariant mass distribution of signal and interference without smearing effect. The peak value of signal is 11.145 μ b, and the peak value of interference is 0.277 μ b.

Calculation frame

Result

Summary 00

Result without smearing effect

Result of 3^3S_1 without smearing effect

Figure: The invariant mass distribution of signal and interference without smearing effect. The peak value of signal is 1.974 μ b, and the peak value of interference is 0.116 μ b.

Result

Summary

Result within smearing effect

Result of $1^{3}S_{1}$ within smearing effect

Figure: The invariant mass distribution of signal and interference within smearing effect. The peak values are 8.869 pb, 1.774 pb, 0.887 pb.

Result

Summary 00

Result within smearing effect

Result of 2^3S_1 within smearing effect

Figure: The invariant mass distribution of signal and interference within smearing effect. The peak values are 0.547 pb, 0.109 pb, 0.055 pb.

Result

Summary

Result within smearing effect

Result of 3^3S_1 within smearing effect

Figure: The invariant mass distribution of signal and interference within smearing effect. The peak values are 0.068 pb; 0.014 pb; 0.007 pb.

Calculation frame

Result

Summary 00

Result within smearing effect

Result of all within smearing effect

Table: Cross section(Breit-wigner) within smearing effect(σ_{MR} =0.1 MeV, 0.5 MeV, 1 MeV).

States	C	ross sectio	n
σ_{MR}	0.1 MeV	0.5 MeV	1 MeV
$e^+e^- ightarrow \mu^+\mu^-$		6881.45 pb	
$1^3 \mathcal{S}_1 o \mu^+ \mu^-$	8.869 pb	1.774 pb	0.887 pb
$2^3 S_1 ightarrow \mu^+ \mu^-$	0.547 pb	0.109 pb	0.055 pb
$3^3 S_1 o \mu^+ \mu^-$	0.068 pb	0.014 pb	0.007 pb
all of signal	9.485 pb	1.897 pb	0.948 pb

Calculation frame

Result

Summary 00

Result within smearing effect

Result of all within smearing effect

Table: Cross section(Breit-wigner) within smearing effect(σ_{MR} =0.1 MeV, 0.5 MeV, 1 MeV).

States	C	Cross section	
σ_{MR}	0.1 MeV	0.5 MeV	1 MeV
$e^+e^- ightarrow \mu^+\mu^-/LH$		22020.6 pb	
$1^3S_1 ightarrow \mu^+\mu^-/LH$	28.381 pb	5.676 pb	2.838 pb
$2^3S_1 ightarrow \mu^+\mu^-/LH$	1.751 pb	0.350 pb	0.175 pb
$3^3S_1 ightarrow \mu^+\mu^-/LH$	0.219 pb	0.0437 pb	0.022 pb
all of signal	30.351 pb	6.070 pb	3.035 pb

Calculation frame

Result

Summary

Result within smearing effect

Result of all within smearing effect($\mu^+\mu^-/LH$, $\sigma_{MR} = 1$ MeV)

Figure: The invariant mass distribution of signal, interference and background within smearing effect($\sigma_{MR} = 1 \text{ MeV}$).

Calculation frame

Result

Summary 00

Result within smearing effect

Result of all within smearing effect($\mu^+\mu^-/LH$, $\sigma_{MR} = 1$ MeV)

Figure: The invariant mass distribution of signal and interference within smearing effect($\sigma_{MR} = 1 \text{ MeV}$).

Introduction Calculation frame Result

Events estimated($\sigma_{MR} = 1 \text{ MeV}$)

Events = $\sigma \cdot \mathcal{L}$

Table: Estimate events with integrated luminosity $\mathcal{L} = 100 \text{ fb}^{-1}$ (BES III, $\sigma_{MR}=1 \text{ MeV}$).

States	Events($\mu^+\mu^-$)	Significance	Events($\mu^+\mu^- + LH$)	Significance
Background	688142617		2202056374	
$1^{3}S_{1}$	88693	3.381 σ	283817	6.048 σ
$2^{3}S_{1}$	5471	0.209 σ	17507	0.373 σ
3 ³ <i>S</i> 1	683	0.026 σ	2185	0.047 σ
all of signal	94847	3.616 σ	303509	6.468 σ

Calculation frame

Result

Summary 00

Result within smearing effect

Events estimated($\sigma_{MR} = 0.5 \text{ MeV}$)

Table: Estimate events with integrated luminosity 100 fb⁻¹ (σ_{MR} =0.5 MeV).

States	Events($\mu^+\mu^-$)	Significance	Events($\mu^+\mu^- + LH$)	Significance
Background	688142617		2202056374	
n=1	177385	6.762 σ	567634	12.096 σ
n=2	10942	0.417 σ	35014	0.746 σ
n=3	1366	0.052 σ	4370	0.093 σ
all of signal	189693	7.231 σ	607018	12.936 σ

Calculation frame

Result

Result within smearing effect

 $^{1}S_{0} \rightarrow \gamma\gamma$

${}^{1}S_{0} \rightarrow \gamma\gamma$, from 2202.02316.

Colliding system, c.m. energy, \mathcal{L}_{int} , exp.	$\sigma imes \mathcal{B}_{\gamma\gamma}$						$N \times B_{\gamma\gamma}$	
	$\eta_{\rm c}(1{ m S})$	$\eta_{\rm c}(2{ m S})$	$\chi_{\rm c,0}(1{\rm P})$	$\chi_{c,2}(1P)$	LbL	${\mathcal T}_0$	${\mathcal T}_0$	$\chi_{c,2}(1P)$
e^+e^- at 3.78 GeV, 20 fb ⁻¹ , BES III	120 fb	3.6 ab	15 ab	13 ab	30 ab	0.25 ab	-	-
e^+e^- at 10.6 GeV, 50 ab ⁻¹ , Belle II	1.7 fb	0.35 fb	0.52 fb	0.77 fb	1.7 fb	0.015 fb	750	38 500
e^+e^- at 91.2 GeV, 50 ab ⁻¹ , FCC-ee	11 fb	2.8 fb	3.9 fb	6.0 fb	12 fb	0.11 fb	5 600	$3\cdot 10^5$
p-p at 14 TeV, 300 fb ⁻¹ , LHC	7.9 fb	2.0 fb	2.8 fb	4.3 fb	6.3 fb	0.08 fb	24	1290
p-Pb at 8.8 TeV, 0.6 pb ⁻¹ , LHC	25 pb	6.3 pb	8.7 pb	13 pb	21 pb	0.25 pb	0.15	8
Pb-Pb at 5.5 TeV, 2 nb ⁻¹ , LHC	61 nb	15 nb	21 nb	31 nb	62 nb	0.59 nb	1.2	62

Calculation frame

Result

Summary 00

Result within smearing effect

 $^{1}\overline{S_{0}} \rightarrow \gamma\gamma$

${}^{1}S_{0} \rightarrow \gamma\gamma$, from 2202.02316.

Result

Summary

Result

Summary

Summary

- We have presented the first feasibility study to produce and observe the bound state of two tau leptons, the heaviest and most compact purely leptonic "atomic" system.
- Ditauonium remains experimentally unobserved to date, and can be exploited for novel bound-state QED tests sensitive to physics beyond the standard model.
- Measurements of ditauonium can be used in high precision tests of QED and mass of tau lepton.

...