Developments of auxiliary mass flow method

Reporter: Zhi-Feng Liu (PKU)

Based on: 1711.09572, 2107.01864, 2201.11636, 2201.11637, 2201.11669

Contributors: Yan-Qing Ma, Xiao Liu, Chen-Yu Wang, Zhi-Feng Liu

> 第二届微扰量子场论研讨会 Date: 2022/08/24

Outline

I. Introduction

- II. Auxiliary mass flow(AMF) method
- III. Iterative AMF
- **IV. More developments**
- V. Summary and outlook

Hadrons scattering process

- σ (hadrons) measured by experiment
- σ (partons) calculated by perturbative theory
- Requirement: uncertainty of perturbative calculations<=uncertainty of experiments
- Test standard model or find new physics

Perturbative calculation process

- Generate scattering amplitude expressed by Feynman integrals(FIs) Relatively easier Feynman diagram method
- Reduce the FIs to master integrals (MIs) by integration-by-part(IBP) identities Much harder

$$F\left(\mathcal{O}(10^4)\right) \xrightarrow{\text{IBP}} \sum_{i=1}^{\mathcal{O}(10^2)} c_i \times I_i$$

- Calculate master integrals Hard
 - One-loop order: solved problem
 - Higher-loop order?

['t Hooft,Veltman 1979] [Oldenborgh,Vermaseren 1990]

Laporta's algorithm [Laporta, hep-ph/0102033] Svzvgv equations

- Syzygy equations [Gluza, et al, 1009.0472]
 - Block trianglular [Guan,Liu,Ma, 1912.09294]

Sector decomposition [Binoth,Heinrich, hep-ph/0004013]

> Canonical form [Henn, 1304.1806]

Auxiliary mass flow [Liu,Ma,Wang, 1711.09572]

Challenges

Difficulties of master integrals calculation

Two-loop $gg \to t\bar{t}H$

- (Semi-)analytical: "basis" of special functions not fully know
- Numerical: unsatisfactory efficiency

Auxiliary mass flow method

> Overview

- Original auxiliary mass flow method [Liu,Ma,Wang, 1711.09572]
- * auxiliary mass expansion [Liu,Ma, 1801.10523]
- * block triangular system [Guan,Liu,Ma, 1912.09294] see report of Xin Guan
- * extension to phase space integrations [Liu,Ma,Tao,Zhang 2009.07987]
- Iterative auxiliary mass flow [Liu,Ma, 2107.01864]
- Automatic computation of boundary conditions [ZFL,Ma, 2201.11637]
- Extension to linear propagators [ZFL,Ma, 2201.11636]
- Mathematica package AMFlow [Liu,Ma, 2201.11669]

Original auxiliary mass flow

> Introduce an auxiliary mass to all propagators

$$I_{\text{mod}}(\eta) = \int \left(\prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}}\right) \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} + \mathrm{i}\eta)^{\nu_{1}} \cdots (\mathcal{D}_{K} + \mathrm{i}\eta)^{\nu_{K}}}$$

Liu,Ma,Wang, 1711.09572

Physical integral

$$I_{\rm phy} = \lim_{\eta \to 0^+} I_{\rm mod}(\eta)$$

• The limit is taken through following three steps:

(1) Set up η –DEs of modified integral

(2) Determination of boundary conditions(BCs) at $\eta = \infty$

(3) Evolution of η from ∞ to 0^+

Boundary conditions

Systematic and simple

• Method of region [Beneke,Smirnov hep-ph/9711391]

$$\ell_i^{\mu} \sim \sqrt{\eta} \quad \Longrightarrow \quad \frac{1}{((\ell+p)^2 - m^2 + \mathrm{i}\eta)^{\nu}} = \frac{1}{(\ell^2 + \mathrm{i}\eta)^{\nu}} \sum_{i=0}^{\infty} \frac{(\nu)_i}{i!} \left(-\frac{2\ell \cdot p + p^2 - m^2}{\ell^2 + \mathrm{i}\eta} \right)^i$$

Feynman parametric representation

$$I_{\rm mod}(\vec{\nu};\eta) \propto \int \mathfrak{D}\vec{x} \frac{\mathcal{U}^{-D/2}}{(\mathcal{F}/\mathcal{U}-\mathrm{i}\eta)^{N_{\nu}-LD/2}} \sim (-\mathrm{i}\eta)^{LD/2-N_{\nu}} \int \mathfrak{D}\vec{x} \, \mathcal{U}^{-D/2}$$

• Equal-mass vacuum integrals at the same loop

$$\int \int \int f^2 + O f = O f^2 + O f = O f^2 + O f =$$

The flow of auxiliary mass

Solve differential equations through power series expansion

An example

> Two-loop massless double-box

- $s = (p_1 + p_2)^2 = 10, t = (p_1 + p_3)^2 = -3$
- Number of MIs: $8 \rightarrow 39$
- Result of corner integral at top sector:

For more complicated problems, the growth of number of MIs may greatly affect the efficiency. What's the solution?

Improved auxiliary mass flow

A simple observation

Liu,Ma, 2107.01864

108 master integrals

Mode	Propagators	#MIs
all	$\{1,2,3,4,5,6,7,8\}$	476
loop	$\{4,5,6,7,8\}$	305
	$\{1,2,3,4,5,6\}$	319
branch	$\{4,\!5,\!6\}$	233
branch	${7,8}$	234
	$\{4\}$	178
propagator	$\{5\}$	176
	{7}	220

Integration regions at the boundary

Region analysis [Beneke,Smirnov hep-ph/9711391]

- principles: loop momentum of each branch can be either of O(1) or $O(\sqrt{\eta})$
- regions for one-loop:

۲

- (LSS), (SLS), (SSL) excluded by momentum conservation
- $R_1 = 2, R_2 = 5, R_3 = 15, R_4 = 47, \dots$

Contributions of each region

Expansion in each region

• (L...L):
$$\frac{1}{(\ell+p)^2 - m^2 + \kappa \times i\eta} \sim \frac{1}{\ell^2 + \kappa \times i\eta} \longrightarrow \text{vacuum}$$

• mixed:
$$\frac{1}{(\ell_{\rm L} + \ell_{\rm S} + p)^2 - m^2 + \kappa \times i\eta} \sim \frac{1}{\ell_{\rm L}^2 + \kappa \times i\eta} \longrightarrow \text{factorized}$$

• (S...S):
$$\frac{1}{(\ell+p)^2 - m^2 + i\eta} \sim \frac{1}{i\eta} \longrightarrow \text{sub-family}$$

Integrals can be solved by iteration!

Example

All-small region iteration

Liu,Ma, 2107.01864

- number of propagators decreases
- end at single-scale integrals or scaleless integrals

Merits and demerits

>Advantages

- Systematic and efficient for any loop FIs(given BCs)
- Simple BCs input: single mass vacuum Feynman integrals
- Arbitrary accuracy

Some single mass vacuum FIs up to 5 loops (known analytic expressions up to 3 loops)

Deficiencies

- No arbitrary accuracy at more than three loops
- Can't handle FIs containing linear propagators (often appear in many physical problems)
 Region analysis is not easy when there are linear propagators!

Arbitrary accuracy for any loops

ZFL,Ma, 2201.11637

Loop-drop technique

A L-loop single mass vacuum FI is equivalent to a (L-1)-loop massless propagator integral(p-integral).

Use AMF and Loop-drop by turns

(L-1)-loop p-integrals ↓ AMF (L-1)-loop single mass tadpoles ↓ Loop-drop (L-2)-loop p-integrals ↓ (AMF+Loop-drop)^{L-2} 0-loop p-integrals(=1)

New viewpoint

ZFL,Ma, 2201.11637

> Feynman integral is Linear algebra!

FIs \triangleq Linear algebra \bigoplus Vacuum integrals \downarrow (2017-2021)

Fls ≜ Linear algebra (2022)

- Only input is integration-by-part(IBP) identities(to set up η –DEs)
- No other input
- No kinematics
- No loops

For linear propagators

Change linear to quadratic propagators ZFL, Ma, 2201.11636

$$\frac{1}{p_a \cdot \ell_a + \Delta_a + \mathrm{i}0^+} \to \frac{1}{x \left(\ell_a^2 + \mathrm{i}0^+\right) + p_a \cdot \ell_a + \Delta_a}$$

- Quadratic integrals at finite x_0 calculated by AMF for any loops
- Original linear integrals obtained by taking x → 0⁺:
 1) Set up x DEs; 2) BCs at x₀ by AMF; 3) Solve x DEs
- A new method to calculate linear integrals systematically and efficiently
- Useful in effective field theory and region expansion

Application to four loops

► Results of all four-loop MIs of vacuum integrals containing a gauge link for the first time $L_{1,000} = 2.467401100272340\epsilon^{-4}$

The most complex diagram

$$\begin{split} I_{(1,\cdots,1,0,0,0)} &= 2.467401100272340\epsilon^{-4} \\ &- (2.10725949249774 - 31.00627668029982 \mathrm{i})\epsilon^{-3} \end{split}$$

 $-(142.4061631115384 + 26.4806037633531 i)\epsilon^{-2}$

ZFL, Ma, 2201.11636

 $+ (258.9104506294486 - 157.4236379069742 i)\epsilon^{-1}$

- -(1638.226426723546 1859.681566826831i)
- $-\ (4750.006669884407 + 11690.896001211223 \mathrm{i})\epsilon$

 $+ (22176.46421510774 + 23525.15655373790 i)\epsilon^2$

 $-(120064.4744857791 + 165534.0450504650i)\epsilon^{3}$

+ $(855055.4310121035 + 539390.2035592209i)\epsilon^4$

 $-(3796471.438494197 + 1678278.567906508i)\epsilon^{5}.$

- Higher precision and higher orders in ϵ achieved easily
- Useful for studying parton distribution functions

The package: AMFlow

https://gitlab.com/multiloop-pku/amflow

Contents

Liu,Ma, 2201.11669

- Main package: AMFlow.m
 - Provides the main functions to realize auxiliary mass flow: AMFSetupSystem, SolveIntegrals, SolveIntegralsGaugeLink,...
- Differential equation solver: diffeq_solver/DESolver.m
 - Provides functions to solve differential equations numerically: CalcInf, AMFlow, ...
- Interface to reducer: ibp_interface
 - FiniteFlow+LiteRed, Fire+LiteRed, Kira
- Pedagogical demonstration: examples
 - automatic_loop, automatic_phasespace, linear_propagator,...

Usage

Installation

- Download a reducer and give its path to ibp_interface
 - Install Kira-2.2 or later: <u>https://kira.hepforge.org/</u>
 - Reset variables defined in ibp_interface/Kira/install.m
 - \$KiraExecutable, \$FermatExecutable
- Usage
 - examples/box
 - SetReductionOptions["IBPReducer" -> "Kira"]
 - SetAMFOptions["AMFMode" -> ...]
 - AMFlowInfo[...]
 - SolveIntegrals[integrals_, precision_, epsorder_]

Summary and outlook

> Summary

- Auxiliary mass flow method is a systematic and efficient method for numerical computation of Feynman integrals
- Cutting edge problems are now reachable in this framework

> Outlook

- Further phenomenology applications: $t\bar{t}j, t\bar{t}H, \cdots$
- Deeper understanding of FIs calculation from Linear algebra
- A wide range of applications of AMF for all purposes(any loops, any dimension, linear propagators, ...)

Thank you!

Definition of FIs

> A family of Feynman integrals

$$I_{\vec{\nu}}(D,\vec{s}) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} + \mathrm{i}0^{+})^{\nu_{1}} \cdots (\mathcal{D}_{K} + \mathrm{i}0^{+})^{\nu_{K}}}$$

$$\mathcal{D}_{\alpha} = A_{\alpha i j} \ell_i \cdot \ell_j + B_{\alpha i j} \ell_i \cdot p_j + C_{\alpha}$$

- ℓ_1, \dots, ℓ_L : loop momenta; p_1, \dots, p_E : external momenta;
- *A*, *B*: integers; *C*: linear combination of \vec{s} (including masses)
- $\mathcal{D}_1, \dots, \mathcal{D}_K$: inverse propagators; v_1, \dots, v_K : integers
- *D*_{K+1}, ..., *D*_N: irreducible scalar products; *v*_{K+1}, ..., *v*_N: non-positive integers

Difficulties of calculating FIs

- Analytical: known special functions are insufficient to express FIs
- Numerical: UV or IR divergence at $D \rightarrow 4$

Calculate p-integrals

> Apply AMF method on (L - 1)-loop p-integral

- 1) IBP to setup η -DEs
- 2) Single-mass vacuum integrals no more than (L-1) loops as input

Single-mass vacuum integrals with L loops are determined by that with no more than (L - 1) loops (besides IBP)

Boundary: 0-loop p-integrals equal 1

Only IBPs are needed to determine FIs!

- IBPs: linear algebra, exact (in D, \vec{s}) relations between FIs
- Loop integrations are completely avoided!

New workflow

The 'FICalc' to calculate FIs can be defined as (any given nonsingular D and s): LZE,YQM,2201,11637

- ① If it is a 0-loop p-integral, return 1;
- ② If it is a single-mass vacuum integral, express it by a p-integral, and call 'FICalc' to calculate the p-integral;
- ③ Otherwise:
 - a) Introduce η to one propagator (if the mass mode is not possible)
 - b) Setup η-DEs using IBP as input
 - c) Call 'FICalc' to calculate boundary FIs at $\eta \rightarrow \infty$
 - d) Numerically solve η -DEs with given BCs to obtain $\eta \rightarrow i0^-$

A five-loop example

LZF,YQM,2201.11637

- $-\ 2.073855510286740 \epsilon^{-2} 7.812755312590133 \epsilon^{-1}$
- $-\ 17.25882864945875 + 717.6808845492140\epsilon$
- $+\ 8190.876448160049\epsilon^2+78840.29598046500\epsilon^3$
- $+\ 566649.1116484678\epsilon^4 + 3901713.802716081\epsilon^5$
- $+\ 23702384.71086095\epsilon^6 + 142142936.8205112\epsilon^7,$
- IBP relations are the only input!
- Terms up to O(ε⁴) agree with literature; Others are new (D = 4 − 2ε) Lee, Smirnov, Smirnov, 1108.0732
- An arbitrary dimension D = 4/7, no other known method can do it

-9.7931120970486493218087959800691116464281825474654283306146947264431 516031830610056668242341877309401032293901004574319494017206091158244 70822465419388568066195037237209021119616849996640259201636321*10^7

with about 130 significant digits

2203.08271

TABLE IX: Values of $\alpha_S(m_Z^2)$ determined at N³LO accuracy from Γ_Z^{tot} , R_Z , and σ_Z^{had} individually, combined, as well as from a global SM fit, with propagated experimental, parametric, and theoretical uncertainties broken down. The last two rows list the expected values at the FCC-ee from all Z pseudoobservables combined and from the corresponding SM fit.

Observable	$\alpha_S(m_{ m Z}^2)$	uncertainties		
		exp.	param.	theor.
$\Gamma_{\rm Z}^{\rm tot}$	0.1192 ± 0.0047	± 0.0046	± 0.0005	± 0.0008
$R_{ m Z}$	0.1207 ± 0.0041	± 0.0041	± 0.0001	± 0.0009
$\sigma_{ m Z}^{ m had}$	0.1206 ± 0.0068	± 0.0067	± 0.0004	± 0.0012
All above combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008
All combined (FCC-ee)	0.12030 ± 0.00026	± 0.00013	± 0.00005	± 0.00022
Global SM fit (FCC-ee)	0.12020 ± 0.00026	± 0.00013	± 0.00005	± 0.00022

TABLE XII: PDG average of the categories of observables [March'22 update of the PDG'21 results]. These are the final input to the world average of $\alpha_S(m_Z^2)$.

category	$\alpha_S(m_Z^2)$	relative $\alpha_S(m_Z^2)$ uncertainty
τ decays and low Q^2	0.1178 ± 0.0019	1.6%
$Q\overline{Q}$ bound states	0.1181 ± 0.0037	3.1%
PDF fits	0.1162 ± 0.0020	1.7%
e ⁺ e ⁻ jets & shapes	0.1171 ± 0.0031	2.6%
electroweak	0.1208 ± 0.0028	2.3%
hadron colliders	0.1165 ± 0.0028	2.4%
lattice	0.1182 ± 0.0008	0.7%
world average (without lattice)	0.1176 ± 0.0010	0.9%
world average (with lattice)	0.1179 ± 0.0009	0.8%

Cutting-edge problems

Cutting-edge examples

- two-loop EW corrections to H + Zproduction at e^+e^- colliders
- two-loop QCD corrections to
 H/W/Z + 2j, ttH, 4j production at hadron colliders
- three-loop QCD correction to $t\bar{t}$

production at hadron colliders

Family	$^{\mathrm{dp}}$	(a)	(b)	(c)	(d)	(e)	(f)
T_{setup}	6	20	18	8	1	25	30
$T_{\rm solve}$	7	11	15	6	3	15	42
P_1	95%	99%	96%	99%	98%	94%	93%

- time: CPU core hour
- weight-8 functions with 16-digit precision

References

- [1] Zhi-Feng Liu and Yan-Qing Ma, "Automatic computation of Feynman integrals containing linear propagators via auxiliary mass flow", Phys.Rev.D 105 (2022) 7 (Editors' Suggestion), [arXiv:2201.11636 [hep-ph]].
- [2] Zhi-Feng Liu and Yan-Qing Ma, "Feynman integrals are completely determined by linear algebra", [arXiv:2201.11637 [hep-ph]].
- [3] Xiao Liu and Yan-Qing Ma, "AMFlow: a Mathematica package for Feynman integrals computation via Auxiliary Mass Flow", [arXiv:2201.11669 [hep-ph]].