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Purpose and Goals

•Many model calculations predict the existence of a critical point in the QCD phase
diagram at a value of the chemical potential where current lattice simulations are
unreliable.

• How to combine or merge a critical equation of state with a smooth background is a
long-standing problem in statistical physics with no unique solution.

• Our goal is to construct an equation of state in the same universality class as the
liquid–gas phase transition and the 3D Ising model. It should have parameters which
may be inferred by hydrodynamic modeling of heavy ion collisions in the Beam
Energy Scan II at the Relativistic Heavy Ion Collider or in experiments at other
accelerators.

• Such an equation of state is also needed for modeling neutron star mergers and
closely related to the cold dense matter comprising neutron stars.

•We provide two very different mathematical constructions.



Construction I (JK, TW, CP)

•Motivated by S-shaped curves in first order phase transitions and the cubic equation

Q±(T, µ) =
{[

(∆2(T ))2 + r2(T, µ)
]1/2 ± r(T, µ)

}k
r(T, µ) =

µ4 − µ4x(T )

µ4 + µ4x(T )
∆2(T ) ∼ d±|T/Tc − 1|p for T → T±

c

• Only two exponents k and p

P (T, µ) = PBG(T, µ)R(T, µ)

• For T ≥ Tc

R(T, µ) = 1− a(T )
(√

∆4 + 1 + 1
)k
− a(T )

(√
∆4 + 1− 1

)k
+ a(T )(Q+ +Q−)

• For T ≤ Tc and µ ≤ µx(T )

RH = 1 + a(T )Q−(T, µ)− a(T )
(√

∆4 + 1 + 1
)k

• For T ≤ Tc and µ ≥ µx(T )

RQ = 1 + a(T )Q+(T, µ)− a(T )
(√

∆4 + 1 + 1
)k



Critical Behavior I (JK, TW, CP)

• As n→ nc along the critical isotherm

P − Pc ∼ sgn(n− nc)|n− nc|δ , δ = 1/(k − 1)

• As t = (T − Tc)/Tc → 0+ the susceptibility and heat capacity are

χB → χ+t
−γ , γ = (2− k)p

cV → c+t
−α , α = 2− kp

• As t→ 0− the susceptibility, heat capacity and density difference along the
coexistence curve are

χB → χ−(−t)−γ

cV → c−(−t)−α

∆n ∼ (−t)β , β = (k − 1)p

• The critical exponents automatically satisfy the known relations α+ 2β + γ = 2
and γ = β(δ − 1).

• Predicts relation between universal ratios of critical amplitudes(
c+

c−

)2−k
= 4

(
χ−

χ+

)k
= 22−k

(
d+

d−

)(2−k)k



Background Equation of State

The background equation of state uses a switching function to transition smoothly from a hadron resonance
gas, with excluded volume interactions, to a perturbative quark–gluon plasma. Two parameters in the QCD
running coupling, two in the switching function, and an excluded volume parameter are adjusted and fixed by
fitting to lattice QCD at µ = 0.
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Background Equation of State

The background equation of state uses a switching function to transition smoothly from a hadron resonance
gas, with excluded volume interactions, to a perturbative quark–gluon plasma. Two parameters in the QCD
running coupling, two in the switching function, and an excluded volume parameter are adjusted and fixed by
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Carbon Dioxide and Argon
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Illustrative Parameter Choices I (JK, TW, CP)

• In order to have an inverted U-shaped coexistence curve in the T − n plane, as seen
in the argon and carbon dioxide liquid-gas phase transitions, the function µx(T ) is
determined by R(T, µx(T ))nBG(T, µx(T )) = nc.

• The critical parameters Tc, µc, nc are related by R(Tc, µc)nBG(Tc, µc) = nc.

• 3D Ising model exponents give k = 1.209, p = 1.564 (mean field values are
k = 4/3, p = 3/2). Then ratios of critical amplitudes give d+/d− ≈ 1/3 (mean
field value is d+/d− = 1).

a(T ) = a0 exp(−T/Ta)

∆2(T ) = d+(T/Tc − 1)p exp(−T/Td) T ≥ Tc
∆2(T ) = d−(1− T/Tc)p exp(−T/Td) T ≤ Tc



P (T, µ) = PBG(T, µ)R(T, µ) I (JK, TW, CP)

Tc = 100 MeV, µc = 750 MeV, nc ≈ 0.4 fm−3



Isotherms of Pressure versus Density I (JK, TW, CP)
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Coexistence Curve I (JK, TW, CP)

R(T, µx(T ))nBG(T, µx(T )) = nc
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Construction II (JK, TW)

• Adopt the Schofield parametric scaling equation of state (1969)

temperature
T − Tc
Tc

= R(1− θ2)

magnetization M →
n− nc
nc

= m0R
βθ

magnetic field H →
µ− µc
µc

= h0R
βδh(θ)

h(θ) = θ(1 + h3θ
2 + h5θ

4)

R ≥ 0 and −θ0 ≤ θ ≤ θ0 where h(θ0) = 0 with θ0 > 1

• The pressure must satisfy the condition (∂P/∂µ)T = n implying

P = Pc + [µ(R, θ)− µc]n(R, θ)−m0h0µcncR
2−αg(θ)

where g(θ) is determined by h(θ)

• Critical curve is θ = ±θ0 and critical point is at R = 0

• h3 and h5 are determined by ratio of critical amplitudes

• h0 and m0 are positive parameters



Pressure and Coexistence Curve II (JK, TW)

Scaling equation of state only
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Including the Background II (JK, TW)

•Modify the scaling variables
n− nc
nc

= m0R
βθ

µ− µx(T )

µc
= h0R

βδh(θ)

This maintains the density as the order parameter

• Pressure
P (µ, T ) = PBG(µ, T ) +W (µ, T )P∗(R, θ)

P∗(R, θ) = P0 + h0µcn0R
βδh+m0h0µcn0R

2−α [θh(θ)− g(θ)]

•W (µ, T ) is a window function that suppresses the critical contribution away from
the coexistence curve

• Background is same as before except for use of point hadrons

• In order to have an inverted U-shaped coexistence curve in the T − n plane, as seen
in the argon and carbon dioxide liquid-gas phase transitions, the function µx(T ) is
determined by nBG(µx(T ), T ) = nc − n0.



θ(T, µ) II (JK, TW)

Tc = 120 MeV, µc = 750 MeV, nc ≈ 1.3 fm−3



Pressure and Susceptibility II (JK, TW)
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Coexistence Curve II (JK, TW)

nBG(µx(T ), T ) = nc − n0
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Window Function II (JK, TW)

W (µ, T ) = exp

[
−
(
µ2j−µ2j

x (T )

c∗µ
j
cµj

)2
]{

1− exp[−(t0/t)
2]
}
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Comment: Background Equation of State

The background equation of state uses a switching function to transition smoothly from a hadron resonance
gas, with excluded volume interactions, to a perturbative quark–gluon plasma. Two parameters in the QCD
running coupling, two in the switching function, and an excluded volume parameter are adjusted and fixed by
fitting to lattice QCD at µ = 0.
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Comment: Mapping

• Rotation: Nonaka and Asakawa, Phys. Rev. C (2005)
T − Tc
Tc

= w
[
ρ sinα1R(1− θ2) + h0 sinα2R

βδh(θ)
]

µ− µc
µc

= −w
[
ρ cosα1R(1− θ2) + h0 cosα2R

βδh(θ)
]

• Order parameter: Rehr and Mermin, Phys. Rev. A (1973)

Ψ = (n− nc)
(
∂µ

∂ζ

)
τ

+ (s− sc)
(
∂T

∂ζ

)
τ

∼ (−t)β

where τ = R(1− θ2) and ζ = h0R
βδh(θ)

• Hence Ψ = w [−µc cosα2(n− nc) + Tc sinα2(s− sc)]

• Our construction gives Ψ = µc(n− nc) near Tc



Conclusion

• Lattice QCD simulations have shown unequivocally that the transition from
hadrons to quarks and gluons is a crossover when the baryon chemical potential is
zero or small. Using two different constructions, we show how to embed a critical
point in a smooth background equation of state so as to yield the critical exponents
and critical amplitude ratios expected of a transition in the same universality class as
the liquid–gas phase transition and the 3D Ising model.

• Apart from the critical exponents and ratios of critical amplitudes (which are
universal) and Tc and µc, construction I has 4 parameters while construction II has 6.

• The parameters might be inferred by hydrodynamic modeling of heavy ion
collisions in the Beam Energy Scan II at the Relativistic Heavy Ion Collider or in
experiments at other accelerators.

•With more realistic nuclear interactions, the equations of state may be used to
model neutron star mergers.
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