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Overview : QCD matter in extreme
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• Phases of matter : solid, liquid, gas, plasma

• Matter in extreme conditions reveals its constituents :
nuclear matter→ quark matter

To study QCD matter under extreme conditions : 

• Nuclear Collisions : heat & compress matter

• Lattice Field Theory : numerically solve partition function

• Neutron Star : dense matter, astronomy constraints

``It would be intriguing to explore new phenomena by 
distributing high energy or high nuclear matter density 
over a relatively large volume.’’  - - T.D. Lee (1974)



Overview: Deep Learning
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Differentiable programming

Backward Propagation

Gradient Descent Algorithm



Overview: Machine learning, Deep Neural Networks, Representation learning
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𝑓𝑁𝑁 𝑥; 𝜃 = ℎ2 𝑤2ℎ1 𝑤1𝑥 + 𝑏1 + 𝑏2

Composing :

Linear affine transformation

+

Non-linear activation

Layer by layer

Representation learning



Overview: Deep Learning, Differentiable Programming and Automatic differentiation
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Defining adjoint variables :

Chain rule for gradients :

Deep Learning composes differentiable components to a program, e.g. DNN, 

then optimizes it with gradients



Overview: Discriminative and Generative learning

5

• Discriminative learning : prediction  (classification / regression)

Function Fitting

Conditional Probability

• Generative learning : understand (generation / clustering)

Joint Probability

𝑦 = 𝑓(𝑥)

𝑝𝜃 𝑦|𝑥 → 𝑝(𝑦|𝑥)

𝑝𝜃 𝑥, 𝑦 → 𝑝(𝑥, 𝑦)
“ What I can not create
I do not understand’ ”



Overview : Our focus of Matter Exploration in extreme with Machine Learning

Questions we will discuss →
• Nuclear Collisions :
✓ Will early dynamic-info survive the evolution? How to decode?

✓ How to more effectively connect experiment to theory/model? 

✓ Dense matter EoS underlies current low energy HIC observable 

• Lattice QCD data:
✓ Could physical observable evaluation from configs and also 

partition function be captured by Machine Learning?

✓ Inverse problem solving: convert measurement to physics?

• Neutron Star :
✓ How to maximumly exploit the astronomy observation?



1.1, Hot matter EoS identification from Heavy Ion 
Collisions with Deep Learning

Nature Communications 9 (2018), no.1, 210

JHEP 12 (2019) 122

Eur.Phys.J.C 80 (2020) 6, 516

Phys. Lett. B 811 (2020)

JHEP 21 (2021) 184

Phys. Rev. D 103 (2021) 11, 116023

With Longgang Pang, Nan Su, Yilun Du, Jan Steinheimer, Lijia Jiang, Lingxiao Wang,
Hanna Peterson, Horst Stoecker, Xinnian Wang, etc.,



Challenges in heavy ion collisions

• Uncertainties in HIC modeling

• Multiple parameters entangle with 
multiple observables

• How to disentangle different factors
to reveal fundamental physics from      
the dynamical environment?

Fig: arXiv:1804.04649

QGP
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Model simulation

?

EoS, 𝜂/s,
initial state, … ？

…

L.G.Pang, K. Zhou, N.Su et al., Nature Commu.9 (2018), no.1, 210



Direct inverse mapping?

• Uncertainties in HIC modeling

• Multiple parameters entangle with 
multiple observables

• How to disentangle different factors
to reveal fundamental physics from      
the dynamical environment?

• DNN make the road!

Fig: arXiv:1804.04649

QGP

7L.G.Pang, K. Zhou, N.Su et al., Nature Commu.9 (2018), no.1, 210



Prototype study of deploy AI to decode dynamical physics in Heavy Ion Collisions
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Conclusion : Information of early dynamics can survive to the end of the hydrodynamics

and encoded within the final state raw spectra, immune to evolution’s uncertainties, with

deep CNN we can decode it back.

• Conventional observable fail !

• Strongly depends on the initial

fluctuations and other uncertainties

• ~ 95% EbE classification accuracy!

• Robust against initial condition, eta/s



Into more realistic cases

Hadronic cascade

(UrQMD considered)

Non-equilibrium transition

(Baryon Clumping, spinodal)
Detector effects

(Hits/Tracks, Point-Net)

Y.L. Du, K. Zhou, et at., 
Eur.Phys.J.C 80 (2020) no.6,516 

J.S, L.G. Pang, K. Zhou, et at., 
JHEP 12,122(2019)

M.O.K, J.S, K. Zhou, et at., 
Phys. Lett. B 811, 135872
JHEP 21 (2021) 184
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1.2, End-to-End Online Event Characteristics for 
CBM with PointNet

With Manjunath O.K, Jan Steinheimer, Andreas Redelbach, Horst Stoecker

Phys.Lett.B 811 (2020) 135872

Particles 2021, 4(1), 47-52



Motivation : point cloud data structure, and CBM challenge
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• Experimental data has inherent point cloud structure

• Point clouds: collection of points in space

• Point clouds are represented as 2D array.

• each row= a point in the point cloud

• each column =a dimension of the point cloud

• PointNet based models learn directly from point clouds.

• respects the order invariance of point clouds

• direct processing of experimental data

• Advantages:

• less processing time ⇒ideal online algorithm

• optimal for higher dimensional data

• We consider the CBM experiment as a use case

• Au-Au collisions

• 10 AGeV

• CBM Challenges    →



Take impact parameter for example
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● ‘b’ is not directly measurable in exp

● Final state observables carry the information

○ MC Glauber

○ Percentiles of Nch, Espec are mapped to centrality

○ Only a likely distribution for b in a centrality bin is known

Impact 
Parameter

● UrQMD + cbmROOT generate data

● With hits/tracks from detector, 

end-to-end online b-meter: PointNet



Models
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● Works on direct exp. output

● Event-by-event online possible

● Training data generated by

‘UrQMD → CbmRoot’

10^5 Au+Au 10 AGeV events

b ~ (0-16)fm



Test Result : resolution, accuracy, more actual case ?
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• Quantifies precision in predictions

• Polyfit fails for central events!

• Similar precision for b>3 fm
• Quantifies accuracy

• DL: -0.3 - 0.2 fm for 

b = 2-14fm

• Polyfit fluctuating

• For realistic bdb distributed testing collision events         →

• Fast online event selection ~ 1k events/s on 1 game GPU（RT2080）



1.3, Bayesian inference of high density EoS from 
low energy heavy ion collisions

With Manjunath O.K, Jan Steinheimer, Horst Stoecker

To be online soon



The EoS parameterization, the flow and transverse kinetic energy measurements
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• Hadronic cascade dominant

• UrQMD model adapted to any

density dependent EoS →

Eur.Phys.J.C82(2022)5,417

Evidence : proton’s v2 and mT

CMF +

Polynomial



Emulator with Gaussian Process 
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● 𝑂𝑏𝑠𝑖 𝜽 ~ 𝐺𝑃(𝜇(𝜽), 𝜅(𝜽, 𝜽′))

● Performance of the trained GP Models : 

𝑅2 ~0.9



Closure tests
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● Posterior ~ Likelihood * Prior

● Reconstruct well the EoS to 4-6 𝑛0

● Drop the first 2 points of 𝑚𝑇 ?

not influence 2-3.5 𝑛0

but matters for 4-6 𝑛0



Inference results with experimental data, and predictability
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arXiv:2203.14974

https://arxiv.org/abs/2203.14974


2.1 Basic applications in Lattice calculation for 
QFT or many-body system

Phys.Rev.D 100,011501(R) (2019)

arXiv:2005.04857

arXiv:2007.01037

With Gergely Endroedi, Long Pang, Horst Stoecker,
Lingxiao Wang, Yin Jiang, Shile Chen, Oleg Savchuk, Lianyi He



DNN into Quantum Field Theory

• Discriminative DL methods for phase
classification and physics regression:

• Generative models for more efficient
config sampling and physics decoding:
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K. Zhou, et.al, Phys.Rev.D 100,011501(R) (2019)



Exploring Many-Body System Phase Structure Unsupervisedly
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• Boltzmann distribution for statistical system (e.g. Field,  or simply XY model)

• Variational approach (e.g. mean field theory) : minimize variational Free Energy

• Introduce more expressive Ansatz with neural network : autoregressive net or Flow model

• generalize to continuous variable systems? Like, for XY model :

• Continuous-mixture Autoregressive Network 

D. Wu, et.al., PRL122,080602(2019) 

L.Wang, Y. Jiang, L.He, K.Zhou 

arXiv:2005.04857



Continuous-mixture Autoregressive Network

• Thermodynamics and transition estimate come out from CAN
agrees well with MCMC

20

L.Wang, Y. Jiang, L.He, K.Zhou 

arXiv:2005.04857
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The trained CAN network 
captures the physics of vortex 
automatically!

conditional

probability

from CAN

Vorticity density map



2.1 From lQCD to in-medium HQ interactions

Phys. Rev. D 105 (2022) 1, 1

With Shuzhe Shi, Jiaxing Zhao, Swagato Mukherjee, Pengfei Zhuang



Introduction

Large mass scale  :

• Produced via Hard Processes from early stage

• ‘Calibrated’ QCD Force – HQ interaction

In Vacuum : NR potential (NRQCD) , Cornell-like

In Medium : Color Screening , Thermal Width

𝑚𝑄 >> 𝛬𝑄𝐶𝐷 , 𝑇, 𝑝

𝑉 𝑟 = −
𝛼

𝑟
+ 𝜎𝑟 + 𝐵

Laine, et.al, JHEP(2007)
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Potential model : Inverse Schrödinger equation

M. Strickland, et.at., PRC(2015) PRD(2018), PLB(2020)

Inverse Power method
H.W.Crater, JCP(1994)
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R. Larsen, et.al, PRD(2019), PLB(2020), PRD(2020)

How to extract potential in a model-independent way given spectroscopy?

New lQCD results cannot be explained by
HTL-inspired potentials

?



Flow chart for “DNN + Schrödinger Eq.”
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Hellmann-Feynman theorem
Phys. Rev. (1939)

Phys. Rev. D 105 (2022) 1, 1 



Proof of Concept

initial potential

Learn V(r) from 5 eigenvalues :

{ En } = {3/2, 7/2, 11/2, 15/12, 19/2} GeV

limited spectrum { En } to  continuous interaction V(r) ?

24



Proof of Concept

initial potential

target spectrum

Learn V(r) from 5 eigenvalues :

{ En } = {3/2, 7/2, 11/2, 15/12, 19/2} GeV

limited spectrum { En } to  continuous interaction V(r) ?

Deviation @ given states’ wavefunction vanishes

24

-- Yes! To certain range decided by the provided states. 



Closure Test – reconstruct HTL potential  

Provide mass and width of

@

25



Results with lattice data for HQ potential

Chi2-per-data=16.5/30
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The reconstructed T, r dependent potential



2.3 Spectral function reconstruction from Euclidean correlator

NeurlPS2021 ‘’Machine learning and the Physical Science’’, arXiv:2112.06206

Phys. Rev. D 106, L051502 (Letter),  arXiv: 2111.14760

Computer Physics Communications (2022) 108547, arXiv: 2201.02564

With Lingxiao Wang and Shuzhe Shi
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3, Dense matter EoS reconstruction for 
Neutron Star from M-R observation

JCAP08(2022)071   (arXiv:2201.01756)

arXiv:2209.08883

With Shriya Soma, Lingxiao Wang, Shuzhe Shi and Horst Stoecker



From EoS to Stellar Structure (MR)
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⚫ Mass ~ 2 solar masses

⚫ Radii ~ 10 km

⚫ Densities ~ 8 

⚫ Gravity → Pressure

⚫ Dense matter Equation of State

𝑃 𝜌

𝜌0



1-to-1 mapping from EoS to M(R)

Micro to Macro
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TOV solver



Inverse TOV solver

Noisy NS Observables to  Equation of State ?

29

TOV solver

?



Infer matter’s EoS inside NS from M(R)
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Generalized Bayesian Inference :

⚫ The EoS is represented by DNN

universal, unbiased, but more params

⚫ The TOV eqs solving is replaced by 

a well-trained DNN

⚫ Gradient based optimization and sa

mpling for M-R data
S.Soma, L.Wang, S.Shi, H. Stoecker, and K. Zhou, JCAP08(2022)071



Validate on closure tests w/o and with noise
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Neutron Star Observables
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With real observables

32S.Soma, L.Wang, S.Shi, H. Stoecker, and K. Zhou, arXiv:2209.08883



Conclusion

We demonstrated that physics of early dynamics (e.g. EoS, CME, centrality info.) in 
heavy ion collisions can survive into final states, with its signal can be decoded by 
machine learning and immune to model uncertainties. ML thus constructs an efficient 
bridge in connecting theory to experiment for physics exploration!

Inverse Problems happened in nuclear physics can be well handled/improved by deep 
learning based solving, e.g. for real-time potential, spectral function reconstruction, 
neutron star EoS constraining.

Generative deep learning models can help many-body physics in efficient sampling, 
mitigating critical slowing-down, represent ensemble of configs in one setup (Net)



Summary : Inverse Problems

● Physics Priors are needed for solving the inverse problem , coult be put into :

1, training data (Implicit) : train proper DNN to learn the inverse mapping

can learn directly the general mapping, avoid case-specific retraining

2, inference process (Explicit) : Chi2 fit+Bayesian inference+Gradient Descent

Automatic differentiation and Network representation 

Explicit 1-to-1 mapping

Exist, but implicit

Quantity of
Interest

Accessible
Observation

Thanks！



Result : model dependency ?



Perturbation on Schroedinger Eq.
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Hellmann-Feynman theorem
Phys. Rev. (1939)



Uncertainty Estimation – Bayesian Inference

𝜔 𝜃 = 𝑝 Τ𝑉𝜃 𝑇, 𝑟 ෤𝑝 𝜃

Sample potentials   ~

Reference Sampler ~

(                 )

re-weighting with :

to grantee posterior sampling
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