QCD Phase Diagram and the Equation of State of Strong-Interaction Matter

Frithjof Karsch Bielefeld University

Faculty of Physics

with a lot of input from 'HotQCD,

in particular, David Clarke Jishnu Goswami Anirban Lahiri Mugdha Sarkar Sipaz Sharma

- QCD phase diagram constraining the location of a critical endpoint
- Equation of state in the BES energy range
- Fluctuations and correlations of conserved charges

Exploring the phase diagram of strong-interaction matter

Simulating strongly interacting matter on a discrete space-time grid (lattice QCD)

Phases of strong-interaction matter

determination of T_c^0 puts an upper limit on $\,T^{CEP}_{}$

Random Matrix
ModelA. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov,
J.J.M. Verbaarschot, Phys. Rev. D58 (1998) 096007OCD motivatedM. Stephanov, Phys. Rev. D73 (2006) 094508

NJL M. Buballa, S. Carignano, Phys. Lett. B791 (2019) 361

for $m_\ell
ightarrow 0$ increasingly unlikely

F. Cuteri et al, arXiv:2107.12739 Sipaz Sharma et al, arXiv:2111.12599

Phases of strong-interaction matter

determination of T_c^0 puts an upper limit on $\,T^{CEP}_{}$

Random Matrix
ModelA. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov,
J.J.M. Verbaarschot, Phys. Rev. D58 (1998) 096007QCD motivatedM. Stephanov, Phys. Rev. D73 (2006) 094508

NJL M. Buballa, S. Carignano, Phys. Lett. B791 (2019) 361

Critical behavior in QCD

Fluctuation observables in QCD

- chiral condensate:
$$\langle \bar{\psi}\psi \rangle_l = \frac{\partial P/T}{\partial m_l/T}$$
, $\langle \bar{\psi}\psi \rangle_l = (\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d)/2$
- chiral order parameter: $M = \frac{2}{f_K^4} \left[m_s \langle \bar{\psi}\psi \rangle_l - m_l \langle \bar{\psi}\psi \rangle_s\right]$
 $m_l = (m_u + m_d)/2$

– chiral susceptibility:
$$\chi_M = m_s \left(\frac{\partial M}{\partial m_u} + \frac{\partial M}{\partial m_d} \right)$$
 magnetic

– mixed chiral susceptibility:
$$\chi_t = T rac{\partial M}{\partial T}$$
 mixed

– conserved charge fluctuations:
$$\chi_{x} = T^{4} \frac{\partial^{4} P/T^{4}}{\partial \mu_{X}^{4}}\Big|_{\mu_{X}=0}$$
 thermal

$$X=B,\ S,\ldots$$

F. Karsch, RHIC-BES seminar, October 2022

The Chiral PHASE TRANSITION in (2+1)-flavor QCD

Pseudo-critical and critical temperatures

F. Karsch, RHIC-BES seminar, October 2022

Curvature of the pseudo-critical line

 $-\mu_B$ -dependent shift of maxima in susceptibilities

$$rac{\partial \chi_M(T,\mu_B)}{\partial T} = 0$$
 or $rac{\partial^2 M(T,\mu_B)}{\partial T^2} = 0$ or $rac{\partial^3 M(T,\mu_B)}{\partial T \partial \mu_B^2} = 0$

- Taylor series, e.g.

$$\chi_M(T,\mu_B) = \chi_M(T_{pc},0) + \frac{\partial \chi_M}{\partial T}(T-T_{pc}) + \frac{1}{2} \frac{\partial^2 \chi_M}{\partial (\mu_B/T)^2} \Big|_{\mu_B=0} \left(\frac{\mu_B}{T}\right)^2 + \dots$$

$$\kappa_2 \simeq \frac{T^2 \partial^2 \chi_M/\partial \mu_B^2}{2T \partial \chi_M/\partial T} \Big|_{\mu_B=0}$$

$$T_{pc}(\mu_B) = T_{pc} \left(1 - \kappa_2 \left(\frac{\mu_B}{T}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T}\right)^4 + \dots\right)$$

Curvature of the pseudo-critical line – towards the chiral limit –

– universality relations also relate derivatives with respect to T and μ_B

$$rac{1}{VT^3} \ln Z(V,T,ec{\mu}) \sim -h^{(2-lpha)/eta\delta} f_f(t/h^{1/eta\delta})$$

$$h \sim \frac{m_l}{T_c} , \ t \sim \frac{T - T_c}{T_c} + \kappa_2 \left(\frac{\mu_B}{T}\right)^2 \iff \begin{bmatrix} \frac{\partial^2}{\partial (\mu_B/T)^2} &\simeq \frac{\partial}{\partial T} \end{bmatrix}$$
FK et al., arXiv:1009.5211

Curvature of the pseudo-critical line – towards the chiral limit –

$$t\sim rac{T-T_c}{T_c}+\kappa_2(H)\left(rac{\mu_B}{T}
ight)^2 \ , \ H=m_l/m_s$$

curvature of crossover line only mildly dependent on H

Phases of strong-interaction matter

Summary: Phases of strong-interaction matter determination of T_c^0 puts an upper limit on T^{CEP}

Summary: Phases of strong-interaction matter determination of T_c^0 puts an upper limit on T^{CEP}

QCD thermodynamics at non-zero net baryon-density – Taylor expansion –

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

$$\boxed{\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k}$$

cumulants of net-charge fluctuations and correlations:

$$\chi^{BQS}_{ijk} = \left. \frac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\mu_{B,Q,S}=0} \quad , \quad \hat{\mu}_X \equiv \frac{\mu_X}{T}$$

QCD thermodynamics at non-zero net baryon-density – Taylor expansion –

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

II)
$$n_S = 0: \hat{\mu}_S \to \hat{\mu}_S(\hat{\mu}_B) = s_1\hat{\mu}_B + s_3\hat{\mu}_B^3 + \dots$$

 $n_Q/n_B = r: \hat{\mu}_Q \to \hat{\mu}_Q(\hat{\mu}_B) = q_1\hat{\mu}_B + q_3\hat{\mu}_B^3 + \dots$

isospin symmetric matter $\iff \mu_Q = 0 \iff n_Q/n_B = 0.5$ conditions met in heavy ion collisions differ $n_Q/n_B = 0.4$

QCD thermodynamics at non-zero net baryon-density – Taylor expansion –

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

Taylor expansion to 8th order in μ_B/T

D. Bollweg et al (HotQCD), arXiv:2202.09184 and QM 2022

HotQCD data collection for (2+1)-flavor QCD-EoS

EoS:2017: arXiv:1701.04325

$N_{ au}=6$					$N_{ au}=8$				$N_{ au} = 12$				
β	m_l	T[Me	eV] #coi	nf. β	m_l	T[MeV] #conf.	β	m_l	T[Me]	V] #con	nf.	
5.980	0.00435	135.2	29 812	00 6.24	5 0.00307	134.64	180320	6.640	0.00196	134.9	4 58	34	
6.010	0.00416	139.'	71 1207	$90 \parallel 6.28$	5 0.00293	140.45	172110	6.680	0.00187	140.4	4 58	33	
6.045	0.00397	145.0	05 1207	$70 \ 6.31$	5 0.00281	144.95	138150	6.712	0.00181	144.9	138	46	
6.080	0.00387	150.	59 793	$90 \ 6.35$	4 0.00270	151.00	107510	6.754	0.00173	151.1	0 142	00	
6.120	0.00359	157.	17 661	$80 \ 6.39$	0 0.00257	156.78	135730	6.794	0.00167	157.1	3 154'	76	
6.150	0.00345	162.2	28 796	$60 \ 6.42$	3 0.00248	162.25	115850	6.825	0.00161	161.9	4 167	72	
6.170	0.00336	165.9	98 497	$60 \ 6.44$	5 0.00241	165.98	120270	6.850	0.00157	165.9	11195	42	
6.200	0.00324	171.	15 1227	$00 \parallel 6.47$	4 0.00234	171.02	139980	6.880	0.00153	170.7	7 212	20	
6.225	0.00314	175.'	76 1227	$30 \parallel 6.50$	0 0.00228	175.64	133070	6.910	0.00148	175.7	6 123	03	
EoS 20	022:			time	s new		tim	es nev	v confs			а	ll new
EoS 20 arXiv:2	022: 2202.09	9184	N	time: conf: $\tau = 8$	s new s.				v confs		$\overline{N_{ au}}$	a = 16	ll new
EoS 20 arXiv:2	022: 2202.09	9184 	$\frac{N}{m_l}$	times confs r = 8 T[MeV]	s new s. #conf.	β	$\frac{1}{m_l}$	= 12 T[MeV]	v confs #conf.	β	$\frac{N_{ au}}{m_l}$	$\frac{16}{T[MeV]}$	Il new
EoS 2(arXiv:2	022: 2202.09	9184 β 6.175	$\frac{N}{0.003307}$	time: conf: <u>r = 8</u> T[MeV] 125.28	5 new 5. #conf. 2,200,000	β	$\frac{1}{m_l}$	es nev = 12 T[MeV]	#conf.	β	$rac{N_{ au}}{m_l}$	a = 16 T[MeV]	ll new
EoS 20 arXiv:2	022: 2202.09	β 6.175 6.245	N m _l 0.003307 0.00307	times confs <u>r = 8</u> T[MeV] 125.28 134.84	5 new 5. #conf. 2,200,000 1,275,380	β 6.640	$\frac{N_{\tau}}{m_l}$ 0.00196	ES NEV = 12 T[MeV] 135.24	#conf. 330,447	β 6.935	$\frac{N_{\tau}}{m_l}$ 0.00145	= 16 T[MeV] 135.80	II NEW #conf. 17671
EoS 2(arXiv:2	022: 2202.09	β 6.175 6.245 6.285	N m _l 0.003307 0.00307 0.00293	time conf $\tau = 8$ T[MeV] 125.28 134.84 140.62	mew #conf. 2,200,000 1,275,380 1,598,555	β 6.640 6.680	$\frac{N_{\tau}}{m_{l}} = \frac{N_{\tau}}{m_{l}}$ 0.00196 0.00187	EX NEW = 12 T[MeV] 135.24 140.80	#conf. 330,447 441,115	β 6.935 6.973	$N_{ au}$ m_l 0.00145 0.00139	= 16 T[MeV] 135.80 140.86	#conf. 17671 23855
EoS 20 arXiv:2	022: 2202.09	 β 6.175 6.245 6.285 6.315 	N m _l 0.003307 0.00307 0.00293 0.00281	time conf <u>r = 8</u> T[MeV] 125.28 134.84 140.62 145.11	#conf. 2,200,000 1,275,380 1,598,555 1,559,003	β 6.640 6.680 6.712	$\frac{N_{\tau}}{m_l} = \frac{0.00196}{0.00187}$	EXAMPLE 12 T[MeV] 135.24 140.80 145.40	#conf. 330,447 441,115 416,703	β 6.935 6.973 7.010	$rac{N_{ au}}{m_l}$ 0.00145 0.00139 0.00132	= 16 T[MeV] 135.80 140.86 145.95	#conf. 17671 23855 26122
EoS 20 arXiv:2	022: 2202.09	 β 6.175 6.245 6.285 6.315 6.354 	N m _l 0.003307 0.00293 0.00281 0.00270	time conf $\tau = 8$ T[MeV] 125.28 134.84 140.62 145.11 151.14	#conf. 2,200,000 1,275,380 1,598,555 1,559,003 1,286,603	β 6.640 6.680 6.712 6.754	$\frac{N_{\tau}}{m_l} = \frac{m_l}{0.00196}$ 0.00187 0.00181 0.00173	EXAMPLE 12 135.24 140.80 145.40 151.62	#conf. 330,447 441,115 416,703 323,738	β 6.935 6.973 7.010 7.054	$N_{ au}$ m_l 0.00145 0.00139 0.00132 0.00129	= 16 T[MeV] 135.80 140.86 145.95 152.19	#conf. #7671 23855 26122 26965
EoS 20 arXiv:2	022: 2202.09	 β 6.175 6.245 6.285 6.315 6.354 6.390 6.492 	$\begin{array}{r} N \\ \hline m_l \\ 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00257 \end{array}$	$timesconf\tau = 8T[MeV]125.28134.84140.62145.11151.14156.92$	mew #conf. 2,200,000 1,275,380 1,598,555 1,559,003 1,286,603 1,602,684 1,602,684	β 6.640 6.680 6.712 6.754 6.794 6.794	$\frac{N_{\tau}}{m_l}$ 0.00196 0.00187 0.00181 0.00173 0.00167 0.00167	ES NEW ES NEW = 12 T[MeV] 135.24 140.80 145.40 151.62 157.75	#conf. 330,447 441,115 416,703 323,738 299,029	β 6.935 6.973 7.010 7.054 7.095	$egin{array}{c} N_{ au} \ m_l \ 0.00145 \ 0.00139 \ 0.00132 \ 0.00129 \ 0.00124 \ 0.$	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21	#conf. #conf. 17671 23855 26122 26965 21656
EoS 20 arXiv:2	022: 2202.09	 β 6.175 6.245 6.285 6.315 6.354 6.390 6.423 6.423 	$\begin{array}{c} N\\ \hline m_l\\ 0.003307\\ 0.00307\\ 0.00293\\ 0.00281\\ 0.00270\\ 0.00257\\ 0.00248\\ 0.00248\\ 0.00241 \end{array}$	$timeconf\tau = 8T[MeV]125.28134.84140.62145.11151.14156.92162.39$	mew #conf. 2,200,000 1,275,380 1,598,555 1,559,003 1,286,603 1,602,684 1,437,436 1,437,436	β 6.640 6.680 6.712 6.754 6.754 6.825 6.825	$\frac{N_{\tau}}{m_l} = \frac{m_l}{0.00196}$ 0.00187 0.00181 0.00173 0.00167 0.00161 0.00157	EXAMPLE 12 T[MeV] 135.24 140.80 145.40 151.62 157.75 162.65	#conf. 330,447 441,115 416,703 323,738 299,029 214,671	β 6.935 6.973 7.010 7.054 7.095 7.130	$\frac{N_{\tau}}{m_l}$ 0.00145 0.00139 0.00132 0.00129 0.00124 0.00119 0.00116	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 163.50	#conf. #conf. 17671 23855 26122 26965 21656 18173
EoS 20 arXiv:2	022: 2202.09	β 6.175 6.245 6.315 6.354 6.390 6.423 6.445 6.454	$\begin{array}{r} N \\ \hline m_l \\ 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00248 \\ 0.00241 \\ 0.00224 \end{array}$	times configure 6 configure	#conf. 2,200,000 1,275,380 1,598,555 1,559,003 1,286,603 1,602,684 1,437,436 1,186,523 272,644	β 6.640 6.680 6.712 6.754 6.794 6.825 6.850 6.850 6.820	$\frac{N_{\tau}}{m_l}$ 0.00196 0.00187 0.00181 0.00173 0.00167 0.00161 0.00157 0.00157	= 12 $T[MeV]$ 135.24 140.80 145.40 151.62 157.75 162.65 166.69 171.65	#conf. 330,447 441,115 416,703 323,738 299,029 214,671 156,111 144,622	β 6.935 6.973 7.010 7.054 7.095 7.130 7.156 7.189	$\frac{N_{\tau}}{m_l}$ 0.00145 0.00139 0.00132 0.00129 0.00124 0.00119 0.00116 0.00112	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 163.50 167.53 179.60	#conf. #conf. 17671 23855 26122 26965 21656 18173 19926 17162
EoS 20 arXiv:2	022: 2202.09	β 6.175 6.245 6.285 6.315 6.354 6.390 6.423 6.445 6.474 6.500	$\begin{array}{r} N \\ \hline m_l \\ 0.003307 \\ 0.00307 \\ 0.00293 \\ 0.00281 \\ 0.00270 \\ 0.00257 \\ 0.00248 \\ 0.00241 \\ 0.00234 \\ 0.00234 \\ 0.00228 \end{array}$	times configure for the conf	mew #conf. 2,200,000 1,275,380 1,598,555 1,559,003 1,286,603 1,602,684 1,437,436 1,186,523 373,644 204,211	β 6.640 6.680 6.712 6.754 6.754 6.825 6.850 6.880 6.910	$\frac{N_{\tau}}{m_l}$ 0.00196 0.00187 0.00187 0.00181 0.00167 0.00167 0.00167 0.00157 0.00153 0.00148	EXAMPLE EXAMPLE EXAMP	#conf. 330,447 441,115 416,703 323,738 299,029 214,671 156,111 144,633 121,248	β 6.935 6.973 7.010 7.054 7.095 7.130 7.156 7.188 7.220	$\frac{N_{\tau}}{m_l}$ 0.00145 0.00139 0.00132 0.00129 0.00124 0.00119 0.00116 0.00113 0.00110	= 16 T[MeV] 135.80 140.86 145.95 152.19 158.21 163.50 167.53 172.60 177.80	#conf. #conf. 17671 23855 26122 26965 21656 18173 19926 17163 2282

Up to 8th order Taylor expansion for pressure

F. Karsch, RHIC-BES seminar, October 2022

Up to 8th order cumulants are used frequently – imag. chem. pot. extrapolations –

S. Borsanyi et al. , JHEP 10 (2018) 205, arXiv:1805.04445

Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

$$\frac{\Delta p(T,\mu_B)}{T^4} = \frac{p(T,\mu_B) - p(T,0)}{T^4} = P_2(T) \left(\frac{\mu_B}{T}\right)^2 + P_4(T) \left(\frac{\mu_B}{T}\right)^4 + P_6(T) \left(\frac{\mu_B}{T}\right)^6 + \dots$$

EoS 2017:

EoS 2022: Taylor series to 8th order

net baryon-number density 0.7 $n_{\rm S} = 0$, $n_{\rm O} / n_{\rm B} = 0.5$ $\mu_{\rm B} / T = 3$ ·O(μ_B / T)⁶ 0.6 $\mu_{\rm B}$ / T = 2.5 $O(\mu_{\rm B} / T)^4$ 0.5 O(µ_B / T)⁸ 0.5 20.4 - 0.4 - 0.3 $\mu_{\rm B}$ / T = 2 $\mu_{\rm B}$ / T = 1.5 $\mu_{\rm B}$ / T = 1.0 0.2 0.1 T [MeV] 0 140 160 180 220 240 260 200 280

range of reliability of 8th order results depends on T-region

 $T \geq 200 \; {
m MeV} \;\; \Rightarrow \; \mu_B/T \geq 3$

 $T \leq 200 \; {
m MeV} \;\; \Rightarrow \; \mu_B/T \simeq 2.5$

...but limited by statistics

24

D. Bollweg et al (HotQCD), arXiv:2202.09184 HotQCD in preparation

EoS 2022: Taylor series to 8th order

EoS 2022: Taylor series to 8th order eliminating the chemical potential

4th order Taylor series is a good approximation in this parameter range

closed expression for EoS

$$\hat{\mu}_B(T, n_B) = y(T, n_B)^{1/3} - \frac{N_1(T)}{3N_3(T)} y(T, n_B)^{-1/3} , \qquad \hat{\mu}_B \equiv \mu_B/T$$

$$y(T, n_B) = \frac{N_1(T)}{N_3(T)} \left(\frac{\hat{n}_B}{2N_1(T)} + \sqrt{\frac{N_1(T)}{27N_3(T)} + \left(\frac{\hat{n}_B}{2N_1(T)}\right)^2} \right) , \ \hat{n}_B \equiv n_B/T^3$$

F. Karsch, RHIC-BES seminar, October 2022

Pressure and energy density on lines of constant s/n_B

 – 4th order Taylor series suffices to describe EoS in almost the entire parameter range covered by BES (collider mode)

HotQCD, in preparation

Comparing Taylor series and Pade resummation

Taylor series

$$\begin{split} \frac{\Delta p}{T^4} &\equiv \frac{p(T,\mu_B)}{T^4} - \frac{p(T,0)}{T^4} = \sum_{k=1}^{\infty} P_{2k}(T) \left(\frac{\mu_B}{T}\right)^{2k} \\ &= \frac{P_2^2}{P_4} \left(\bar{x}^2 + \bar{x}^4 + c_{6,2}\bar{x}^6 + c_{8,2}\bar{x}^8 + \ldots\right) \quad \begin{array}{l} \text{use } P_2 > 0, \ P_4 > 0 \\ &\bar{x} \equiv \sqrt{P_4/P_2} \ (\mu_B/T) \\ &c_{6,2} = \frac{P_6P_2}{P_4^2} \ , \ c_{8,2} = \frac{P_8P_2^2}{P_4^3} \end{split}$$

Pade approximation

$$P_{[4,4]} = rac{(1-c_{6,2})ar{x}^2 + (1-2c_{6,2}+c_{8,2})ar{x}^4}{(1-c_{6,2}) + (c_{8,2}-c_{6,2})ar{x}^2 + (c_{6,2}^2-c_{8,2})ar{x}^4}$$

pressure:
$$\frac{p(T, \mu_B)}{T^4}_{[nm]} = \frac{P_2^2}{P_4} P_{[nm]} \quad \text{(similar for n_B/T^3, e/T^4....)} \quad \text{OR}$$

energy density:
$$\left(\frac{\Delta \epsilon}{T^4}\right)_{[nm]} = 3 \left(\frac{\Delta p}{T^4}\right)_{[nm]} + T \frac{\mathrm{d}}{\mathrm{d}T} \left(\frac{P_2^2}{P_4} P_{[nm]}\right) \quad \text{(similar for n_B/T^3, e/T^4....)}$$

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

0

n_B / T³

T = 135 MeV

dPd[4,4]/dµB Taylor : $O(\mu_p^7)$

0.5

Pd[3,4]

 $\mu_{\rm B}$ / T

1

1.5

Comparing Taylor series and Pade resummation

agreement between Taylor series and Pade approximants in a larger μ_B range at higher temperature; qualitatively similar μ_B dependence **HotQCD** in preparation

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

2.5

2

0

0

n_B / T³

T = 155 MeV

Taylor : $O(\mu_p^7)$

0.5

Pd[3,4] dPd[4,4]/dµB

 $\mu_{\rm B}$ / T

1

1.5

& arXiv:2202.09184 29

2.5

F. Karsch, RHIC-BES seminar, October 2022

Comparing Taylor series and Pade resummation

agreement between Taylor series and Pade approximants in a larger μ_B range at higher temperature; qualitatively similar μ_B dependence HotQCD in preparation

& arXiv:2202.09184

EoS 2022: Taylor series versus Pade

energy 8th order and Pade-deriv.

Poles of [n,n] Pade approximants in QCD

$$\hat{\mu}_{B,c}^{\pm} = \pm r_{c,4} e^{\pm i \Theta_{c,4}} , \ r_{c,4} = \sqrt{\frac{12 \tilde{\chi}_0^{B,2}}{\tilde{\chi}_0^{B,4}}} \left| \frac{1 - c_{6,2}}{c_{6,2}^2 - c_{8,2}} \right|^{1/4} , \ c_{2k,2} = \frac{2 \tilde{\chi}_0^{B,2}}{(2k)! \tilde{\chi}_0^{B,2k}} \left(\frac{12 \tilde{\chi}_0^{B,2}}{\tilde{\chi}_0^{B,4}} \right)^{k-1}$$

complex poles move to real axis as temperature decreases

distance of complex poles from the origin is given by the Mercer-Roberts estimator for the radius of convergence

within current errors poles on the real axis (critical point) are possible only for $T < 135 {
m MeV} \;,\; \mu_B/T > 2.5$

higher statistics will sharpen the constraint

Higher order cumulants – Taylor expansion of QCD EoS and the HRG –

Taylor expansion of the QCD pressure: $\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(T, V, \mu_B, \mu_Q, \mu_S)$

$$egin{aligned} rac{P}{T^4} = \sum_{i,j,k=0}^\infty rac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(rac{\mu_B}{T}
ight)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k \end{aligned}$$

cumulants of net-charge fluctuations and correlations:

$$\chi^{BQS}_{ijk} = \left. \frac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\mu_{B,Q,S}=0} \quad , \quad \hat{\mu}_X \equiv \frac{\mu_X}{T}$$

cumulants at vanishing chemical potential provide information on the equation of state as well as freeze-out conditions at small non-zero chemical potential Ratio of baryon number – strangeness correlation and net strangeness fluctuations

D. Bollweg et al. (HotQCD), arXiv:2107.10011

PDG-HRG: uses experimentally known hadron spectrum listed by the Particle Data Group QM-HRG: uses additional hadrons predicted to exist in Quark Model calculations

Ratio of baryon number – strangeness correlation and net strangeness fluctuations BS ratios probe flavor-correlations

$$-rac{\chi^{BS}_{11}}{\chi^{S}_{2}}=rac{1}{3}+rac{2}{3}rac{\chi^{us}_{11}}{\chi^{s}_{2}}$$

conserved charge i quark number fluctuations:

$$\chi_{11}^{BS} = -\frac{1}{3}\chi_{11}^{us} - \frac{1}{3}\chi_{11}^{ds} - \frac{1}{3}\chi_2^s$$

 ${\cal O}(g^6 \ln g^2)$

J.-P. Blaizot, E. Iancu, A. Rebhan, Phys. Lett. B 523 (2001) 143

O(10) stronger flavor correlations at T_{pc} than at $2T_{pc}$

Baryon number – strangeness chemical potentials at freeze-out from strange baryon yields BS ratios probe strangeness content in an HRG

STAR multi-strange baryon yields are consistent with freeze-out at T_{pc} and a μ_S/μ_B that reflects contributions from additional strange baryons

at
$$T_{pc}$$
 QCD: $\frac{\mu_S}{\mu_B} \simeq 0.24$
PDG-HRG: $\frac{\mu_S}{\mu_B} \simeq 0.21$

baryon number – strangeness correlation from HIC

$$egin{aligned} &-rac{\chi_{BS}}{T^2}>rac{1}{VT^3}[2\langle\Lambda+\Sigma^0
angle+4\langle\Sigma^+
angle\ &+8\langle\Xi
angle+6\langle\Omega^-
angle]=97.4\pm5.8. \end{aligned}$$

$$egin{aligned} &rac{\chi_S}{T^2}\simeq rac{1}{VT^3}[(\langle K^+
angle+\langle K^0
angle+\langle\Lambda+\Sigma^0
angle+\langle\Sigma^+
angle\ &+\langle\Sigma^-
angle+4\langle\Xi^-
angle+4\langle\Xi^0
angle+9\langle\Omega^-
angle+ ext{antiparticles})\ &-(\Gamma_{\phi o K^+}+\Gamma_{\phi o K^-}+\Gamma_{\phi o K^0}+\Gamma_{\phi o ar K^0})\langle\phi
angle]=(504\pm24). \end{aligned}$$

P. Braun-Munzinger, A. Kalweit, K. Redlich, J. Stachel, Phys. Lett. B747 (2015) 292, arXiv:1412.8614 for Skellam distributions mean values and second order cumulants as well as correlations are related:

$$egin{aligned} &rac{\chi_N}{T^2} = rac{1}{VT^3} (\langle N_q
angle + \langle N_{-q}
angle) \ &rac{\chi_N}{T^2} = rac{1}{VT^3} \sum_{n=1}^{|q|} n^2 (\langle N_n
angle + \langle N_{-n}
angle \end{aligned}$$

$$rac{Q_{NM}}{T^2} = rac{1}{VT^3} \sum_{n=-q_N}^{q_N} \sum_{m=-q_M}^{q_M} nm \langle N_{n,m}
angle
onumber \ |q| = 1 \ (B), \ 2 \ (Q), \ 3 \ (S)$$

getting control over B rather than P fluctuations is important!!!

$$\implies -\frac{\chi_{BS}}{\chi_S} \ge 0.193(22)$$

Ratios of second order cumulants at $\mu_B = 0$ – observables at the LHC ? –

$$\chi^{BQ}_{11}/\chi^{BS}_{11}=-0.368(24)$$

large deviations from PDGHRG still 25% deviations from QMHRG2020 sensitive test of QCD

 $\chi^{BS}_{11}/\chi^{QS}_{11}=0.623(40)$

at ALICE freeze-out temperature == QCD crossover temperature $T_{fo} = 156.5(1.5) \mathrm{MeV}$

Ratios of 4th and 2nd order cumulants

- large deviations from Skellam -

- ratios of 4th and 2nd order cumulants differ from non-inter. HRG for T>145 MeV
- they change by ~(20-40)% in the crossover region

Conclusions

ES-II range

What we learned so far about the CEP in QCD from lattice QCD calculations:

I) the critical temperature is below $T_c = 132^{+3}_{-6}~{
m MeV}$

II) the corresponding critical chemical potential is likely to be above 400 MeV

 Taylor expansions need to be resummed in order to reach CEP

– no CEP for $\mu_B/T \leq 2.5$

- CEP not in the BES-II range (in collider mode)
- EoS (pressure & number density) well controlled for

 $\mu_B/T \leq 2.0 \; orall T > 135 \; {
m MeV}$ (larger range for higher T)

– reliable μ_B - range is smaller for higher order cumulants, given only an 8th order Taylor series for the pressure