Status of the JadePix telescope and the CPV chip development

Yunpeng Lu Aug. 29, 2022

Outline

- JadePix-3 Telescope *
 - JadePix-3 CMOS chip
 - Prototype of beam telescope
 - Initial test with cosmic rays

- CPV-4 3D integration **
 - 3D-SOI and CPV-4 development
 - Visual inspection on 3D chips
 - Test plan

* Sheng Dong¹, Yunpeng Lu¹, Hulin Wang², Qun Ouyang¹

** Yunpeng Lu¹, Yang Zhou¹, Jia Zhou¹, Hongyu Zhang¹, Jing Dong¹, Mingyi Dong¹, Qun Ouyang¹

1 Institute of High Energy Physics, CAS
2 Central China Normal University

R&D of silicon pixel sensor for Vertex (in China)

Targeted on high resolution, low power and fast readout.

CPV-2

- JadePix and TaichuPix on 180 nm CIS process
- CPV on 200 nm SOI process

CPV-3

CPV-4

CPV-1

JadePix-3, a major effort on CMOS pixel sensor

- Technological preparation
 - JadePix-1 on the TowerJazz CIS process
 - JadePix-2 and MIC4 on the design schemes
- Collaborative design of a large team
 - Over 10 participants from IHEP, CCNU, SDU, Dalian Minzu U.
- Test work lasted for 1.5 years to fully characterize the chips
 - Highly required expertise on both sensor and electronics
- Highlighted as the achievements of MOST1 project

The pixel matrix of JadePix-3

Full-sized in the rq direction of detector layout

- Matrix coverage: 16 µm × 512 rows = 8.2 mm
- 4 parallel sectors, scalable in the z direction
 - 48 × 4 = 192 columns

Rolling shutter to avoid heavy logic and routing in pixel matrix

- Minimum pixel size: 16 μm × 23.11 μm
- Matrix readout time: **98.3** µs/frame

Sector	Diode	Analog	Digital	Pixel layout
0	2 + 2 µm	FE_V0	DGT_V0	16×26 µm²
1	2 + 2 µm	FE_V0	DGT_V1	16× 26 µm²
2	2 + 2 µm	FE_V0	DGT_V2	16× 23.11 μm²
3	2 + 2 µm	FE_V1	DGT_V0	16×26 µm²

5

Hit processing flow in JadePix-3

Row address extracted from the **row selecting sequence** (Rolling shutter)

Time stamp

Data buffering & transmission

- Column address of HIT encoded at the bottom of matrix
- Only HIT address recorded (zero suppression) <Example of data frame> Time stamp attached to the HIT address Head: Buffer status • In the form of frame number JadePix-3 flow Data: HIT address 1 Data: HIT address 2 row address information extracted Data: HIT address 3 from the row selecting sequence (Rolling shutter) Tail: Frame number col address encoded at the Col. address encoder end of columns
 - Time stamp attached to the generated hit address

Test system for single chip

- 4 test setup deployed in IHEP, CCNU, USTC, JLU IPBUS protocol
 - Used to interact with single JadePix-3 chip
- General-purpose FPGA platform, KC705
 - Well-designed FPGA firmware

- Reliable high-performance control link for particle physics electronics
- JUMBO PACKAGE feature developed to boost the payload data rate up to 750 Mbps

In IHEP Lab

CEPC Workshop, Apr. 2021, Yunpeng Lu

IPBUS: a flexible Ethernet-based control system

Distribution of System Clock

- System clock fanned out from a Si5338 board to all the detector planes
 - Each plane operated in the common clock domain
 - 200 MHz, differential pairs
 - Commercially available

Synchronization of Start Up

Rolling shutter scan to start simultaneously Coincidence of HITs recorded with same frame number strobe sync_start External trigger is not necessary **FSM** IDLE GO Plane 0 configured as Master • To issue a hard-wired start signal Start Start Start Start Start from plane 0 to plane 4 via a daisy chain Plane 4 Plane 3 Slave Plane 2 Slave Plane 1 Slave Plane 0 Slave Master **Clock Generator** Si5338-EVB

Hardware

• Detector plane distance 22 mm

5 detector planes prepared.

• Sensitive area 8.2 mm * 4.8 mm

Threshold

- Threshold calibrated with electrical test pulse
 - 200 e⁻ applied to the full matrix

Noise hit rate

- Noise hit rate below 10⁻⁸ /frame/pixel
 - Low noise rate & Zero suppression resulted in ~100 Bytes / min @ threshold = 200 e⁻
 - \rightarrow long time operation to collect cosmic ray events

Initial test with cosmic ray

More 3-plane events displayed

2-plane events checked

- Number of events sorted according to the combination of planes
 - No event falling in the category "plane 0&2", consistent with the geometry constraints

	plane 0&1	plane 1&2	plane 0&2
Run 119	2	3	0
Run 120	3	1	0
Run 121	4	2	0
Run 122	5	2	0
Run 123	3	1	0
Run 124	0	2	0
Run 125	1	0	0
Sum	18	11	0

To do list

- To complete the integration of 5 detector planes
- **EUTelescope software for track reconstruction and analysis**
 - Need more experts in this area
- Time slot for test beam to be booked or shared
 - Not available yet

Motivation of 3D-SOI development

Vertex Detector

Review report on the Vertex part of CDR in 2018

Findings: there is active R&D and groups are making good progress, building on large effort by the international community. Compared to other efforts toward precise and transparent vertex detectors, CEPC (with its 100% duty cycle) should place stronger emphasis on power management. Advanced processes like 65 nm CMOS or 3D-integrated devices should be pursued actively and can have a big impact on the vertex detector performance.

Pixel to pixel connection is needed to shrink the pixel size \rightarrow spatial resolution 3D-SOI

IO to IO connection is used to shrink the peripheral area \rightarrow 4-side abuttable

Applications	of	3D	in	industry	
	UI	JD	111	muusuy	

3D connection	pixel to pixel	IO to IO
Industrial application	Imaging CMOS	ASIC circuit
Connection	u-Bump	TSV
Stacking	flip chip	top side up
# of layers	2 layers	≥ 2 layers

IO to IO connection

Design resource of 3D-SOI

lower

tier

- 0.2um 3D-SOI process: ~100 transistors and 5 metal layers in each tier
 - lower tier: sensing diode and analog front-end
 - upper tier: digital logic and readout
 - Pixel size can be cut half without compromise of functionality
 - Comparison to the CMOS process
 - 0.35um process: ~10 transistors and 6 metal layers, pixel size ~ 20*20 um²
 - 0.18um process: ~100 transistors and 6 metal layers, pixel size ~ 26*28 um²

19

pixel

CPV-4 3D design

Stacking of Sensor + Analog + digital to pursue

CPV4_Upper

- Pixel size 17um * 21um
- Data-driven readout ~ 1us of time stamp
- Power consumption ~ 50mW/cm²

4 pixels arranged in 2 columns

Before 3D integration

- Test on lower and upper tier independently
 - Low leakage current on **sensor** (Diode + Guard Ring)
 - ✓ Signal waveform observed on **analog** front-end
 - ✓ Response from the **digital** logic and readout
- Test system developed and debugged interactively with the upper tier chip

Analog frontend w/o PDD Test charge injected $\sim 100 e^{-1}$

Analog frontend with PDD Test charge injected ~ 750 e⁻

Delivery of 3D chips

- First batch arrived in Aug.
 - Second batch of 17 chips in a couple months

Upper and low tier chips on the wafer

Chips delivered after 3D integration

Visual inspection on 3D chips

Alignment of marks

Lower chip

23

Visual inspection on 3D chips

Bonding pad rebuilt on top

3D chip

Visual inspection on 3D chips

Pixel matrix

3D bumps marked with 📃

Lower chip (2*2 pixels)

3D chip (Pattern of upper chip)

Test plan

- Glue and wire bonding on the 3D chips
 - Trial and test with defective samples firstly
- Repeat and compare the tests on lower and upper tier respectively
 - To check possible change on the 3D chips
- Debug and operate the 3D chips as a whole
 - Yield of pixel to pixel connection
 - Electrical calibration
 - Radiative source test
 - Laser test
 - Particle beam test if available

Summary

- JadePix-3 telescope prototype of 3 planes tested with cosmic ray
 - Very low event rate due to the small active area and narrow acceptance angle
 - 3-plane and 2-plane events seemed reasonable
 - Ready to proceed for a 5-plane configuration
- 3D chips for the CPV-4 design were ready for test
 - The essential elements were checked visually
 - Conclusion of test are expected before the end of this year

Thanks for your time

Features of 3D-SOI: low material

- The bulk of upper tier is removed by wet-etching
 - 260 um \rightarrow 10 um thick
 - Wet-etching stopped by the BOX oxide layer automatically → makes SOI quite compatible with 3D integration
- Thinning of the lower tier is also possible
 - 75 um in conventional SOI and 50 um in CMOS (lower tier not necessarily an SOI sensor)

* Currently 3D-SOI demonstrated on a lower tier of 260 um thick

Features of 3D-SOI: TBV

- Backside connection is Through Box Via (TBV)
 - Already established in the SOI process
- Additional metal layer formed for wire bonding
 - Post-process after 3D integration

*Credit of the conceptual drawing: Miho Yamada